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4. Plates

The topic of the following Chapters are plate theory, both classical thin plate theory and theory
for thick plates. While the membrane formulation is characterized by the fact that loads and
responses are in the plane, the plate models consider out of plane loads and responses.

Recall that the classical beam models are forth order differential equations, and that C1 conti-
nuity is required for the finite element approximation. This is straightforward to achieve with
cubic polynomials.

We will see below a model of thin plates, based on Kirchhoff theory, which also result in a forth
order differential equation. Thus, for a conforming element method C1 continuity is required
across inter element boundaries. In 2D this is more difficult to achieve, it turns out that for
triangular elements a quintic polynomial is required.

An alternative to thin plates are thick plates based on Mindlin-Reissner theory, similar to the
model of beams. Here C0 continuity is sufficient and the usual finite elements can be used,
however the problem with shear locking is also present for plates.

In the sequel we discuss:

1. Kirchhoff plates, thin plates where transverse shear strains assumed to vanish.

2. Mindlin-Reissner plates, nonzero transverse shear strains.
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Note: no plate models are compatible with tree dimensional elasticity. They are useful when
the “thickness” is small compared to the size of the plate.

x

y

z

−t− x

z

−u(x)

−θy(x)

w(x, y)

Figure 4.1: Plate geometry. Deformation in a x-z-cross section.

In this chapter thin plate theory is introduced, the basic assumptions, the potential energy
functional, the differential equations and finite element methods. The topic of the next two
chapters are thick plate models and element methods.
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The relevant sections in the text book [Cook et al., 2002]Cook:01 are 15.1, 15.2, 15.3, 15.4 and
15.5.

4.1. Introduction to plates

A plate is:

1. The geometry is plane and the “thickness” t is small compared to the “length” L.

t
L > 1

3 thick plates, full three dimensional analysis.
1
3 >

t
L > 1

10 medium thick plates, analysis using thick plate theory.
t
L < 1

10 thin plates, thin plate theory.

2. The load is “out of plane”.

3. The response in bending; the stress throughout the thickness is not uniform.

Remark 4.1 In order to use a plate model, the thickness can not be to small, eg. kites and
hot air balloons can not be analyzed using plate models.
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4.2. Assumptions

The derivation of a model of thin plates are based on the following assumptions:

1. The geometry is given by:

V =
{

(x, y, x) ∈ R3|(x, y) ∈ A ⊂ R2, z ∈
(
− t

2
,
t

2
)}

where t is the plate thickness and A is the middle plane.

2. Transverse share strains are zero

γxz = γyz = 0

3. The stress normal to the plate midlplane are negligible

σzz = 0

4. Small rotations and small displacements:

w(x, y) << t, sinα = α =
∂w

∂x

similarly for the rotations around the x-axis

5. No stress in the middle plane:

σxx = σyy = σxy = 0

The boundary conditions must be compatible to this assumption.
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Remark 4.2 In general the thickness can be a function of x and y, t = t(x, y). However, the
variation must be “sufficiently” slow in order to avoid three dimensional effects.

Remark 4.3 The term inextensional bending is used when the middle-plane has zero stress.
It is also called plate bending. If the the middle-plane has “sufficiently” large deformations it
is called extensional bending and a shell model is appropriate.

4.3. Kinematics

Displacements: The in plane displacements are related to the normal displacements as
follows:

u(x, y, z) = −z ∂w
∂x

, v(x, y, z) = −z ∂w
∂y

and w(x, y, z) = w(x, y)

Thus, just as for the Euler-Bernoulli beam:

Plane cross sections remains plane and normal to the middle-plane during deformations.

Based on the above assumptions on the displacement field we can find:

• strain, stress, potential energy and equilibrium.
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Strains: The strain vector is composed of in-plane strains:

ε =

εxx

εyy

γxy

 =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


(
u

v

)
=


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


(
−z ∂w

∂x

−z ∂w
∂y

)
= −z


∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

 = −zκ(w)

where the bending vector, κ(w), is introduced:

κ(w) =

κxx(w)

κyy(w)

κxy(w)

 =


∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y


Remark 4.4 Using the kinematic assumptions

εzz =
∂w

∂z
= 0, 2εxz = γxz =

∂u

∂z
+
∂w

∂x
= −∂w

∂x
+
∂w

∂x
= 0

and 2εyz = γyz =
∂v

∂z
+
∂w

∂y
= −∂w

∂y
+
∂w

∂y
= 0

thus the requirement of vanishing transverse shear follows from the kinematic assumptions.

Remark 4.5 In the derivation of the beam theory a certain inconsistency existed. A similar
inconsistency exist for plate theory.

Note that the plate theory also has certain inconsistencies, just as the beam models. In
particular, the shear strains are zero. For an isotropic material this implies that the shear
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stresses, σxz = σyz = 0, also vanish. As for the beam the shear forces are in the equilibrium
equations.

The normal strains, εzz, are also zeros, i.e. we have a plane strain condition. On the other
hand, we also have σzz = 0, which more natural physical assumption. For an isotropic material
the conditions of plane stress and plane strain implies that ν = 0.

4.4. Moment-bending relations

Stresses: The stress strain relations are found from the material law:

σ = Eε = −zEκ

In plate theory is is useful to introduce shear forces, stresses integrated across the plate thick-
ness. They result in moments:

M =

Mxx

Myy

Mxy

 =
∫ − t

2

− t
2

−σz dz =
∫ − t

2

− t
2

Ez2 dzκ = Dκ

E int the expression above can be a general material law, however in the following we make
the assumption of an isotropic material.

Remark 4.6 Note that the reference plane is the middle plane, thus bending is not coupled
to axial deformations in the middle plane.
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4.5. Potential energy

Using the above in the potential energy functional for for three dimensional elasticity, we obtain
the potential energy functional for plate bending.

The strain energy becomes:

U(w) =
1
2

∫
V
σTε dV =

1
2

∫
V
εTEε dV =

1
2

∫
A

∫ t
2

− t
2

z2κTEκ dz dA =
1
2

∫
A
κ(w)TDκ(w) dA

or U(w) =
1
2

∫
A
MTκ(w) dA

For an isotropic and homogeneous material the internal energy becomes:

U(w) =
Et3

24(1− ν2)

∫
A

[(
∂2w

∂x2

)2

+ 2ν
(
∂2w

∂x2

)(
∂2w

∂y2

)

+
(
∂2w

∂y2

)2

+ 2(1− ν)
(
∂2w

∂x∂y

)2
]
dA (4.1)

In case the loading consist of transversal loads the load potential becomes

W (w) =
∫

V
F Tu dV =

∫
A
qw dA
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4.6. Equilibrium I

The equilibrium conditions can be derived by minimizing the potential energy functional.
The minimum, or stationary value, is taken for a function w satisfying the Euler-Lagrange
equations. The functional above is of the form:

Π =
∫

V
F (x, y, w,w,x, w,y, w,xx, w,xy, w,yy) dV

The Euler-Lagrange equations, see [Gelfand and Fomin, 1963][2], are:

∂F

∂w
− ∂

∂x

∂F

∂w,x
− ∂

∂y

∂F

∂w,y
+

∂2

∂x2

∂F

∂w,xx
+

∂2

∂x∂y

∂F

∂w,xy
+

∂2

∂y2

∂F

∂w,yy
= 0

For a isotropic and homogeneous material the associated differential equations becomes

q +
Et3

24(1− ν)

[
∂2

∂x2
(2w,xx + 2νw,yy) +

∂2

∂x∂y
(4(1− ν)w,xy) +

∂2

∂y2
(2w,yy + 2νw,xx)

]
= q +

Et3

24(1− ν)
[2w,xxxx + 2νwxxyy + 4(1− ν)w,xxyy + 2w,yyyy + 2νwxxyy]

= q +D [w,xxxx + 2w,xxyy + w,yyyy] = 0

Thus the thin plate equation is:

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
= − q

D

[2] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1963.
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∆∆w = − q

D
or ∆2w = − q

D

or, with a slight abuse of notation since ∇2 is taken to mean ∇ · ∇ = ∇T∇,

∇2∇2w = − q

D
or ∇4w = − q

D
(4.2)

where

D =
Et3

12(1− ν2)

4.7. Equilibrium II

Above we used a result from calculus of variations to derive the Euler-Lagrange equations
for the thin plate model. Here we show how to find the minimum of the potential energy
functionals arising in linearized elasticity.

First, consider the function

Π(V ) =
1
2
V TKV − V TF (4.3)

where V and F are vectors of dimension n and K is an n by n matrix. Think of K as the
stiffness matrix, F as a load vector and V the degrees of freedom of a finite element model.
Thus (4.3) is a finite element approximation of the potential energy functional.
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In order to find the minimum one could compute the gradient and find the vector U where the
gradient is zero. I.e. set all the partial derivatives to zeros, or

∂Π
∂Vi

= 0 (4.4)

for i = 1, . . . , n.

Note that
∂Π
∂Vi

=
[
Π′(V + tei)

]
t=0

(4.5)

where ei is an n vector with 1 in location i and zeroes elsewhere. Consequently, if[
Π′(U + tV )

]
t=0

= 0 (4.6)

for all vectors V it follows that at the point U all the partial derivatives are zero.

But
Π(U + tV ) =

1
2

(UTKU + 2tV TKU + t2V TKV )− (UTF + tUTF ) (4.7)

Thus
Π′(U + tV ) = V TKU + tV TKV − V TF (4.8)

and evaluating this at t = 0 we have shown that

V T (KU − F ) = 0 for all V (4.9)

Since it holds for all V , it holds for all the unit vectors ei, thus the vector U satisfies

KU = F (4.10)
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Then, we consider the continuous plate problem. In order to simplify the writing

K(w, v) =
∫

A
κ(w)Dκ(v) dA and F (v) =

∫
A
qv dA (4.11)

Note that K(w, v) = K(v, w) and that K(v, v) ≥ 0

Then the potential energy functional for the thin plate formulation can be written

Π(v) =
1
2
K(v, v)− F (v) (4.12)

As above the function w that minimize the potential energy functional satisfy

Π′(w + tv) = 0 (4.13)

for all v and t = 0.

Note that
F (w + tv) = F (w) + tF (v) (4.14)

and
K(w + tv, w + tv) = K(w,w) + 2tK(w, v) + t2K(v, v) (4.15)

Thus
Π′(w + tv) = K(w, v) + tK(v, v)− F (v) (4.16)

and the function w minimizing Π(v) satisfies

K(w, v) = F (v) for all v (4.17)
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It is beyond the scope this course to discuss the existence of a function w.

Note that (4.17) correspond to the principle of virtual work, and is called a weak formulation.

Note that the derivation is general and with suitable definition of K(w, v) and F (v) all formu-
lations of linearized elasticity, e.g. three dimensional, membrane, beam, etc. is covered.

4.8. Field equations I

In order to derive the differential equation, note that the weak form of the thin plate problem
is: Find w satisfying∫

A
Mxx(w)v,xx +Myy(w)v,yy + 2Mxy(w)v,xy dA =

∫
A
q v dA for all v (4.18)

Now, the Greens formula is used to move derivatives from the test function v to the moments
M.

First∫
A
Mxxv,xx dA =

∫
∂A
Mxxv,xnx dS −

∫
A
Mxx,xv,x dA

=
∫

∂A
Mxxv,xnx dS −

∫
∂A
Mxx,xvnx dS +

∫
A
Mxx,xxv dA (4.19)
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where nx is the x component of the unit outward normal vector. Then∫
A
Myyv,yy dA =

∫
∂A
Myyv,yny dS −

∫
A
Myy,yv,y dA

=
∫

∂A
Myyv,yny dS −

∫
∂A
Myy,yvny dS +

∫
A
Myy,yyv dA (4.20)

where ny is the y component of the unit outward normal vector.

The 2Mxyv,xy is handled similarly, for one term the Green formula is used for x first and then
for y, for the other term it is used for y first and then for x.

Collecting the terms we obtain: Find w satisfying∫
A
(Mxx,xx + 2Mxy,xy +Myy,yy

)
v dA+

∫
∂A
v,xMxxnx + v,yMyyny + v,xMxyny + v,yMxynx dS

−
∫

∂A
v(Mxx,xnx +Myy,yny +Mxy,ynx +Mxy,xny) dS =

∫
A
q v dA for all v (4.21)

In order to discuss the boundary conditions the boundary integrals is rewritten. The outward
normal on the boundary is n and the unit tangent vector is s. Since we are in two dimensions
s = (−ny, nx). First

v,xMxxnx + v,yMyyny + v,xMxyny + v,yMxynx = (∇v)T

(
Mxxnx +Mxyny

Mxynx +Myyny

)
(4.22)
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The gradient can be decomposed into

∇v = (∇v)Tnn+ (∇v)T s s =
∂v

∂n
n+

∂v

∂s
s (4.23)

We also introduce the notation

Mnn = nT

(
Mxxnx +Mxyny

Mxynx +Myyny

)
and Mns = sT

(
Mxxnx +Mxyny

Mxynx +Myyny

)
(4.24)

Thus
v,xMxxnx + v,yMyyny + v,xMxyny + v,yMxynx =

∂v

∂n
Mnn +

∂v

∂s
Mns (4.25)

For the second term we introduce the shear forces Qx and Qy and obtain

Mxx,xnx +Myy,yny +Mxy,ynx +Mxy,xny = Qxnx +Qyny = Qn (4.26)

The weak form takes the form: Find w satisfying∫
A
(Mxx,xx + 2Mxy,xy +Myy,yy

)
v dA

+
∫

∂A

∂v

∂n
Mnn +

∂v

∂s
Mns dS −

∫
∂A
v Qn dS =

∫
A
q v dA for all v (4.27)

Now, use test functions v such that v = ∂v
∂n = 0, then

Mxx,xx + 2Mxy,xy +Myy,yy = q (4.28)
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Otherwise it would be possible to find a basis function that violates the equality in the weak
form.

Then, assume that v = 0 on the boundary, but the normal derivative is nonzero. Since v = 0,
∂v
∂s = 0 and

Mnn = 0 (4.29)

To treat the final terms on the boundary we assume that the boundary is smooth and use
integration by parts ∫

∂A

∂v

∂s
Mns dS = −

∫
∂A
v
∂Mns

∂s
dS (4.30)

Combining this with the shear force term∫
∂A
v
(
Qn −

∂Mns

∂s

)
dS = 0 (4.31)

Thus
Vn = Qn −

∂Mns

∂s
= 0 (4.32)

The combinations of boundary conditions are summarized below. If the boundary is not
smooth corner forces enters at the corner points, see below.
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4.9. Field equations II

Equilibrium: The equilibrium equation can also be derived by deriving the equilibrium of
a sub square of the plate. In the derivation shear forces enters, since we neglected shear forces
they where not part of the potential energy functional above. The figure below show the
direction of the shear forces and moments.

x

y

z

x

y

z

q
Qy

Qy +
∂Qy

∂y
dy

Qx

Qx + ∂Qx
∂x

dx

Mxy Myy

Myx

Mxx

Myx +
∂Myx

∂y
dy

Mxx + ∂Mxx
∂x

dx

Myy +
∂Myy

∂y
dy

Mxy +
∂Mxy

∂x
dx

Equilibrium in the z-direction result in equilibrium of the shear forces:
∂Qx

∂x
+
∂Qy

∂y
= −q

Then, we consider the equilibrium of moments relative to the three axes. Equilibrium relative
to the x and y axes result in the two differential equations for moments:

∂Mxx

∂x
+
∂Mxy

∂y
= −Qx and

∂Myx

∂x
+
∂Myy

∂y
= −Qy
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while equilibrium relative to the z-axis result in

Mxy = Myx

This can be derived from the stresses.

Eliminating Qx, Qy and Myx result in

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
= q

Using the material law for an isotropic material, and eliminating eliminate the moments and
curvatures, the biharmonic plate equation, Equation 4.2, can be established.
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4.10. Boundary conditions

Before introducing the boundary conditions it is appropriate to discuss Cauchys law for shear
forces and moments. It is illustrated below.

x

ny
s

x

nys

Qn

Qx

Qy
Myx

Mxx

Mxy

Myy

Mnn

Mns

Figure 4.2: Cauchys law for a plate.

For the moments

Mnn = Mxxc
2 +Myys

2 + 2Mxysc and Mns = (Myy −Mxx)sc+Mxy(c2 − s2). (4.33)
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where s = sinφ and c = cosφ. For the shear forces

Qn = Qxc+Qys (4.34)

In the derivation of suitable boundary conditions Poisson’s paradox was encountered, it was
solved by Kirchhoff :

• The plate equation is a fourth order partial differential equation.

• Hence, two boundary conditions must be specified at each point on the boundary.

• It appears that we have three conjugate quantities on the boundary, normal moment,
rotational moment and shear force, see Equation 4.33 and Equation 4.34.

We assume that the local axis are oriented as shown in Figure 4.2. The kinematic quantities
are given by

w,
∂w

∂n
= −θs and

∂w

∂s
= θn.

The conjugate quantities at the boundary are

Qn, Mnn and Mns

The work on the boundary are

WB =
∫

S

(
Qnw +Mnn

∂w

∂n
+Mns

∂w

∂s

)
ds (4.35)
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It seem like we should specify three values at each point of the boundary:

Simply supported: w = 0,
∂w

∂s
= 0 and Mnn = 0.

Free: Qn = 0, Mnn = 0 and Mns = 0.

However, if w = 0 it follows that ∂w
∂s = 0, thus only two quantities are relevant in the first case.

The reduction to two independent variables on the boundary is based on integration by parts
of the middle term of Equation 4.35 along a line segment AB

WB|BA =
∫

[A,B]

[(
Qn −

∂Mns

∂s

)
w +Mnn

∂w

∂n

]
ds+Mnsw|BA

Upon introducing the modified shear force

Vn = Qn −
∂Mns

∂s

the load potential can be written

WB|BA =
∫

S

(
Vnw +Mnn

∂w

∂n

)
ds+Mnsw|BA (4.36)

This result in the correct number of conjugated quantities at the boundary:

w, Vn and
∂w

∂n
= −θs, Mnn
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Homogeneous boundary conditions: The homogeneous boundary conditions for a thin
plate is:

Clamped: w = 0 and
∂w

∂n
= 0.

Simply supported: w = 0 and Mnn = 0.
Free: Vn = 0 and Mnn = 0.

Symmetric about s: Vn = 0 and
∂w

∂n
= 0.

Corner forces: The last term in Equation 4.36 needs to be explained.

If the boundary is smooth, Mns is continuous on the boundary S and that the boundary is
smooth such that A = B

Mnsw|BA = 0.

In case the plate has corners, the integration is done “edge by edge”. In an corder C the
moment Mns has a jump, say from M+

ns to M−ns. At the corners the jump term becomes

Mnsw|BA = Rcw = (M+
ns −M−ns)w

since w is continuous. This jump is called corner forces.
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4.11. Summary

In summary:

The highest derivative m in the PMPE 2

Highest derivative 2m (in the differential equation) 4

Kinematic boundary conditions (0, 1) (w,w,n = −θs)

Natural boundary condition (2, 3) (Mnn, Vn)

Continuity requirement m− 1 1 (w,w,x, w,y)

The load potential can be added to the potential energy functional:

Π(w) =
1
2

∫
A
κTDκ dA−

∫
A
qw dA−

∫
S

(
Vnw +Mnn

∂w

∂n

)
ds−Mnsw|BA

Thus, distributed loads, boundary moments and boundary shear forces can be specified.

Since second derivatives are present in the formulation, C1 continuity is required for conforming
finite element methods. Unfortunately, this i more difficult in two dimensions, for a triangular
element quintic polynomials are required.

Kinematic boundary conditions are prescribed for displacements and rotations. Natural bound-
ary conditions for moments and shear forces.

Before discussing finite elements for thin plates we will derive equations for thick plates.
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Remark 4.7 Other sources for information on plate theory is Professor Carlos Felippa, Uni-
versity of Colorado, Boulder. The notes to Advanced Finite Element Method has two chapters
on plates.

A classical reference to plates is [Timoshenko and Woinowsky-Krieger, 1970][3].

[3] Stephen P. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. Mc Graw Hill, second
edition, 1970.

http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/Home.html
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Øving 4.1
Figuren under viser en rektangulær plate.

b

a

Anta at platen er fritt opplagt, best̊ar av et isotropt materiale og er belastet med en fordelt
last gitt ved

q(x, y) = q0 sin
mπx

a
sin

nπy

b

Videre s̊a antar vi at løsningen av platens differensialligning er gitt ved

w(x, y) = Cmn sin
mπx

a
sin

nπy

b

a) Tilfredstiller løsningen, w(x, y), platens randkrav?

b) Bestem Cmn slik at platens differensialligning blir tilfredsstilt.

c) Bestem momentene Mxx, Myy og Mxy.
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d) Plot Mxy f.eks. i MATLAB. Kan du ut i fra figuren og definisjonen av Mns avgjøre om vi
f̊ar hjørnekrefter i platen?

Anta at lasten n̊a kan beskrives ved

q(x, y) =
∞∑

m=1

∞∑
n=1

qmn sin
mπx

a
sin

nπy

b

For en jevnt fordelt last, q0, s̊a har vi at

qmn =
16q0
π2mn

.

P̊a samme m̊ate s̊a antar vi at forskyvningen er bestemt ved

w(x, y) =
∞∑

m=1

∞∑
n=1

Cmn sin
mπx

a
sin

nπy

b

e) Benytt løsningen funnet for Cmn i b) over til å bestemme hver av koeffisientene Cmn.

f) Bestem hvor mange ledd i summen en trenger for å f̊a fire siffers nøyaktighet.

g) Gjør det samme for momentene. Konvergerer disse like fort som forskyvningen?

Øving 4.2
I denne oppgaven skal vi modellere platen i oppgave 4.1 i ANSYS. Benytt q0 = 1, a = b = 10,
E = 10.92, ν = 0.3 og t = 0.1.
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• Modeller hele platen ved å benytte SHELL63 (KEYOPT(1) = 2, sl̊ar av membran effekter).

• Sammenlign resultatene for wmidt for elementinndelingene 2× 2, 4× 4, 8× 8 og 16× 16
med eksakt løsning.

• Se p̊a reaksjonskreftene for 16×16 elementnettet. Kan vi se om vi har hjørnekrefter (slik
som teorien sier).

• Benytt samme element men lag et elementnett best̊aende av trekanter. Sammenlign
trekant- og firkantløsningen.

• Benytt symmetriegenskapene til å modeller en kvart modell. Sammenlign trekantløsningen
med trekantløsningen fra en full modell.

Øving 4.3
Tynne plater er ikke tilgjengelig i COMSOL Multiphysics Structural Module. Vi kan benytte
Mindlin-Reissner formuleringen og sørge for at platen er tynn og s̊a se om vi f̊ar resultater som
samsvarer med tynnplateløsningen.
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Et alternativ er å benytte
COMSOL Multiphysics PDF
Modes. Vi trenger da å mod-
ellere de bi-harmoniske lignin-
gene fra grunnen av og vi m̊a
velge Argyris — Quintic un-
der Element.

I denne oppgaven skal vi benytte samme data som i 4.2.

• Sett opp de bi-harmoniske ligningene for en tynn plate med isotropt homogent materiale
p̊a en form som passer i COMSOL Multiphysics (svak form, Weak Form, Subdomain).

• Modeller dette problemet i COMSOL Multiphysics som en generell svak form for prob-
lemet i 4.2.

• Sammenlign resultatene med eksakt løsning.

• I brukermanualen til COMSOL Multiphysics er det knyttet kommentarer til dette ele-
mentet. Er det noe å ta hensyn til i problemet vi løser her?
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• Sammenlign med resultatene fra ANSYS 10.0.

• Benytt ogs̊a svak formulering for de kinematiske randkravene (Lagrange — Linear inter-
polasjon for de kontinuerlige Lagrange multpilikatorene). Hvordan ser disse Lagrange-
multiplikatorene ut i hjørene? Tegn randverdiene.
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