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5. Thick plates

In this Chapter we derive model for thick plates, called Mindlin-Reissner plates, following
the same path as for beams and thin plates. In Chapter Chapter 4 we derived a model
for thin plates and we recall that the potential energy functional had terms with second order
derivatives, thus a conforming finite element method require C1 continuity across inter element
boundaries.

The Mindlin-Reissner model for thick plates involves only second derivatives in the potential en-
ergy functional, consequently C0 continuity is sufficient in a conforming finite element method.
However, shear locking is a problem for sufficiently thin plates, similar to the Mindlin-Reissner
beam.

The material on plates is found in [Cook et al., 2002][1] Chapters 15.1, 15.2, 15.3, 15.4 and
15.5. The derivation follow [Hughes, 1987][2].

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.

[2] T. J. R. Hughes. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-
Hall, Englewood Cliffs, New Jersey, 1987.
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5.1. Assumptions

The thick plate theory is based on the following assumptions:

1. The geometry;

V =
{

(x, y, x) ∈ R3|(x, y) ∈ A ∈ R2, z ∈
[
− t

2
,
t

2
]}

where t is the thickness of the plate and A is the middle plane.

2. Plane stress, σzz = 0.

3. Small displacements and rotations:

w(x, y) << t, sinα = α = −θy

and similarly for rotations around the x-axis.

4. The displacements in the plane is given by:

u(x, y, z) = zθy(x, y) and v(x, y, z) = −zθx(x, y) (5.1)

where two new parameters are introduced in order to model the rotation of a fiber1

5. The out of plane displacements are independent of z, w(x, y, z) = w(x, y).
1The line defined by fixing (x, y) in equation (5.1) is a fiber, while the plane defined by fixing z is a lamina.
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Remark 5.1 One could also add axial displacements in the x and y directions. Since we use
the mid plane in the model, the axial terms are independent of the bending terms. We therefor
concentrate on the bending part in our derivation.

Remark 5.2 In general the thickness may be a function of x and y, t = t(x, y). Again, the
variation should not introduce three dimensional stress effects.

Remark 5.3 Other definitions of positive angles are used by some authors. In [Hughes, 1987][2]

the sign of the angles are chosen to be able to use an index form of tensor notation.

[2] T. J. R. Hughes. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-
Hall, Englewood Cliffs, New Jersey, 1987.
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Figure 5.1: Plate geometry. Deformation of a plate in a y cross section.

Item 2 and 4 above are inconsistent, however experience show that the model is useful in
practice. Since vi har innført muligheten for at platefibrene ikke trenger å være normalt p̊a
referanseplanet har vi skjærtøyninger p̊a tvers.
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5.2. Kinematics

Displacements: Above the displacements where defined as

u(x, y, z) = zθy(x, y), v(x, y, z) = −zθx(x, y) and w(x, y, z) = w(x, y)

see also Figure 5.1 This can be summarized as:

Plane cross sections remains plane after deformation, but not necessarily normal to the
reference plane.

Using the displacement field it is straightforward to find:

• strains, stresses, equilibrium, and the potential energy functional.

Strains: The strains are out of plane:

ε =



εxx

εyy

γxy

γxz

γyz


=



u,x

v,y

u,y + v,x

w,x + u,z

w,y + v,z


=



zθy,x

−zθx,y
−zθx,x + zθy,y

θy + w,x

−θx + w,y


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It is convenient to split the strain vector in two parts:

ε =

(
εb

εs

)
where εb is the bending part:

εb =

εxxεyy
γxy

 = −z

 −θy,x
θx,y

θx,x − θy,y

 = −zκ

and εs is the shear part:

εs =

(
γxz

γyz

)
=

(
θy + w,x

−θx + w,y

)
Here γαz is the difference between the normal fiber and the material fiber. .

Remark 5.4 The plate theaory also has microscopic inconsistencies. The normal strains, εzz,
are zero and this indicate a plane strain condition. However, the assumption σzz = 0 is more
physical. For an isotropic material this is possible only when ν = 0.

5.3. The material law

The relations between stress and strains are from the relation for linearized elasticity:

σ = Eε
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For thick plates it is convenient to split it into two parts:

σ =

(
σb

σs

)
=

(
Eb 0

0 Es

)(
εb

εs

)
where σb =

σxxσyy

σxy

 and σs =

(
σxz

σyz

)

The stresses are integrated across the thickness to obtain moments and shear forces:(
M

Q

)
=
∫ − t

2

− t
2

(
−zσb
σs

)
dz =

(
Db 0

0 Ds

)(
κ

εs

)
(5.2)

where

Db =
∫ − t

2

− t
2

z2Eb dz and Ds =
∫ − t

2

− t
2

Es dz

Note that if Eb and Es are constant across the plate

Db =
t3

12
Eb and Ds = tEs (5.3)

Remark 5.5 To be consistent with the classical theory a shear correction factor κ may be
introduced, and D̄s = κDs. For plates the correction factor is κ = 5

6 .
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5.4. Potential energy

The potential energy is found from the general expression for strain energy, where the internal
strain energy is written as a sum of bending and shear energy:

Π(w, θx, θy) = Ub(κ) + Us(εs)−W

=
1
2

∫
A
κTDbκ+ εTsDsεs dA−

∫
A
qw dA

Note that if the shear strains are zero, i.e. w,x− θy = 0 and w,y + θx = 0, the energy functional
is equal to the functional for thin plates.

Remark 5.6 The shear strains measure the differences in angles between a plane normal to
the axis after deformation and the actual plane given by θx and θy

Remark 5.7 Using (5.3) the potential energy functional becomes

Π(w, θx, θy) =
1
2

∫
A

t3

12
κTEbκ+ tεTs Esεs dA−

∫
A
qw dA (5.4)

Thus, when t becomes small the shear term dominates the equation and shear locking occurs.

Remark 5.8 The potential energy functional is not complete, a number of boundary terms
may be added to take non homogeneous boundary conditions into account, see Hughes [Hughes, 1987].
For some terms see subsection 5.7.

Remark 5.9 In order to find the correct definition of signs of the angles and definition of the
boundary condition, refer to the manual of the FEM program.
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5.5. Equilibrium equations I

Recall from Chapter 4 that the functions w and θ minimizing the potential energy functional
satisfies ∫

A
κT (φ)Dbκ(θ) + εTs (φ, v)Dsεs(θ, w) dA =

∫
A
qv dA for all φ and v (5.5)

where θ and φ are vector functions

θ =

(
θx

θy

)
and φ =

(
φx

φy

)
(5.6)

In order to derive the equilibrium equations from the weak form Greens formula is used. It is
convenient to use the moments and shear forces in the weak formulation∫

A
κT (φ)M(θ) + εTs (φ, v)Q(θ, w) dA =

∫
A
qv dA for all φ and v (5.7)

Here
κT (φ)M = −φy,xMxx + φx,yMyy + (φx,x − φy,y)Mxy (5.8)

and
εTs (φ, v)Q = φyQxz + v,xQxz − φxQyz + v,yQuz (5.9)
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Greens formula is used one each moment term∫
A
φy,xMxx dA =

∫
∂A
φyMxxnx dS −

∫
A
φyMxx,x dA (5.10)∫

A
φx,yMyy dA =

∫
∂A
φxMyyny dS −

∫
A
φxMyy,y dA (5.11)∫

A
φx,xMxy dA =

∫
∂A
φxMxynx dS −

∫
A
φxMxy,x dA (5.12)∫

A
φy,yMxy dA =

∫
∂A
φyMxyny dS −

∫
A
φyMxy,y dA (5.13)

(5.14)

and on each force therm with force multiplied with the derivative of the basis function v∫
A
v,xQxz dA =

∫
∂A
v Qxznx dS −

∫
A
v Qxz,x dA (5.15)∫

A
v,yQyz dA =

∫
∂A
v Qyzny dS −

∫
A
v Qyz,y dA (5.16)

(5.17)

Collecting terms we obtain∫
A
φy(Mxx,x +Mxy,y +Qxz)− φx(Myy,y +Mxy,x +Qyz)− v(Qxz,x +Qyz,y) dA

+
∫
∂A
−φy(Mxxnx +Mxyny) + φx(Myyny +Mxynx) + v(Qxznx +Qyzny) dS =

∫
A
q v dA
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Setting φx = φy = 0 and v = 0 on the boundary, it follows that

∂Qxz
∂x

+
∂Qyz
∂y

= q (5.18)

in the mid plane of the plate.

Setting φx = 0 and φy = v = 0 on the boundary, it follows that

∂Mxx

∂x
+
∂Mxy

∂y
+Qxz = 0 (5.19)

in the mid plane of the plate.

Setting φx = φy = v = 0 on the boundary, it follows that

∂Mxy

∂x
+
∂Myy

∂y
+Qyz = 0 (5.20)

in the mid plane of the plate.

Substituting the expressions (5.2) into equations (5.18), (5.19) and (5.20) we obtain a set
of three coupled second order partial differential equations. In addition suitable boundary
conditions are required.

5.6. Boundary conditions

In order to proceed, we set φx = φy = 0 on the boundary. Then

Qxznx +Qyzny = Qn = 0 (5.21)
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on (a part) of the boundary

The last term we rewrite using the normal and tangential part of the vector function (−φy, φx),
i.e. (

−φy
φx

)
= nT

(
−φy
φx

)
n+ sT

(
−φy
φx

)
s = φsn+ φns (5.22)

Using this

− φy(Mxxnx +Mxyny) + φx(Mxynx +Myyny)

= (−φy φx)

(
Mxxnx +Mxyny

Mxynx +Myyny

)
= φsMnn + φnMns = 0 (5.23)

The homogeneous boundary conditions are summarized in the table below:

Condition A B C

Clamped w = 0 θn = 0 θs = 0

Free Qn = 0 Mns = 0 Mnn = 0

Simply supported, hard w = 0 θn = 0 Mnn = 0

Simply supported, soft w = 0 Mns = 0 Mnn = 0

Symmetric around s Qn = 0 Mns = 0 θs = 0

Antisymmetric around s w = 0 θn = 0 Mnn = 0
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Note that the clamped boundary conditions are essential conditions and is usually enforced
in the finite element space, while the free conditions are natural conditions and are part of
the functional if they are non-homogeneous. The others are a mixture of essential and natural
conditions.

In order to incorporate non-homogeneous conditions the potential energy functional can be
taken to be

Π(w, θx, θy) =
1
2

∫
A
κTDbκ+ εTsDsεs dA−

∫
A
qw dA−

∫
S

[Qnw +Mnnθs +Mnsθn] ds

where Qn, Mnn and Mns are given quantities on the boundary. The boundary can be divided
in different pieces

S = Sw ∪ SQ where Sw ∩ SQ = ∅

Similarly
S = Sθn ∪ SMns where Sθn ∩ SMns = ∅

and
S = Sθs ∪ SMnn where Sθs ∩ SMnn = ∅

Note that there are two possibilities for Simply supported conditions. In some cases the hard
condition is to strong, the model predict a stiffer plate than the soft condition.

For thin plates there was corner forces, for Mindlin-Reissner plates a substantial increase in
Qn is observed for corners with soft conditions. This is more realistic than concentrated corner
forces. The increase in forces is not observed with hard conditions.
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Not that the boundary conditions for thick plate theory are different from classical thin plate
theory.

5.7. Equilibrium equations II

Since shear strains are included, the equilibrium equations can also be derived from the three
dimensional model of solid mechanics, see MEK4550.

The equilibrium equations can be written

∂σij
∂xj

+ Fi = 0 (5.24)

Integrating across the thickness in the x-direction of the equation becomes∫ − t
2

− t
2

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx dz = 0

where the integral of σxx and σxy across the thickness is zero in our case, no axial forces.
Similarly in the y-direction. Integration of the z equation result in∫ − t

2

− t
2

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ Fz dz =
∂Qx
∂x

+
∂Qy
∂y

+ qz = 0

Here we have used Equation 5.2, σzz = 0 and

qz =
∫ − t

2

− t
2

Fz dz
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In order to derive the momentum equations, multiply Equation 5.24 with −z:∫ − t
2

− t
2

−z
(∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ Fx

)
dz =

∂Mxx

∂x
+
∂Mxy

∂y
+Qx −mx = 0 (5.25)

Here mx is zero in our case. For the y-direction∫ − t
2

− t
2

−z
(∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ Fy

)
dz =

∂Mxy

∂x
+
∂Myy

∂y
+Qy −my

=0

= 0

5.8. Summary

In summary:

Highest derivative m (in the PMPE) 1

Highest derivative 2m (in the differential equation) 2

Kinematic boundary conditions 0 (w, θn, θs)

Natural boundary conditions 1 (Mnn,Mns, Qn)

Continuity requirements m− 1 0 (w, θx, θy)

Note, only C0 continuity is required for a finite element method.
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Øving 5.1
Vis hvordan vi kommer fram til ligning Equation 5.25. Hva skjuler seg i mx? (Anta at vi har
kjente størrelser p̊a flaten St = (x, y,−t/2)∪ (x, y, t/2). Benytt ligningene fra elastisitetsteori.)

Øving 5.2
Varier tykkelsen p̊a platen gitt i Øving 4.2. Benytt ANSYS eller COMSOL Multiphysics til
å finne ut n̊ar platen begynner å bli tykk. Benytte grenseverdiene gitt i Kapittel 4 som
utganspunkt.

Hvordan er hjørnekreftene sammenlignet med tynnplateteori? Benytt b̊ade harde og myke
randkrav.

Øving 5.3
Benytt ANSYS og løs Oppgave C15.2 i [Cook et al., 2002][1].

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.
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