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5. Thick plates University of Oslo
In this Chapter we derive model for thick plates, called Mindlin-Reissner plates, following
the same path as for beams and thin plates. In Chapter Chapter 4 we derived a model
for thin plates and we recall that the potential energy functional had terms with second order . —
derivatives, thus a conforming finite element method require C! continuity across inter element
boundaries. Mek 4560

Torgeir Rusten
The Mindlin-Reissner model for thick plates involves only second derivatives in the potential en-
ergy functional, consequently C° continuity is sufficient in a conforming finite element method.
However, shear locking is a problem for sufficiently thin plates, similar to the Mindlin-Reissner
beam.

The material on plates is found in [Cook et al., 2002][1} Chapters 15.1, 15.2, 15.3, 15.4 and
15.5. The derivation follow [Hughes, 19872

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.

[2] T.J.R.Hughes. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-
Hall, Englewood Cliffs, New Jersey, 1987.
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5.1. Assumptions

The thick plate theory is based on the following assumptions:

1. The geometry;
V= {(m,y,m) cR3|(z,y) c AER? 2 € [—%, %]}

where t is the thickness of the plate and A is the middle plane.
2. Plane stress, 0,, = 0.
3. Small displacements and rotations:

w(z,y) << t, sina =a = -6,

and similarly for rotations around the x-axis.

4. The displacements in the plane is given by:
w(z,y, 2) = 20y(x,y) and v(z,y, z) = —205(x,y) (5.1)
where two new parameters are introduced in order to model the rotation of a fiber!

5. The out of plane displacements are independent of z, w(z,y, z) = w(z,y).

'The line defined by fixing (z,y) in equation (5.1) is a fiber, while the plane defined by fixing z is a lamina.




Remark 5.1 One could also add axial displacements in the x and y directions. Since we use
the mid plane in the model, the axial terms are independent of the bending terms. We therefor
concentrate on the bending part in our derivation.

Remark 5.2 In general the thickness may be a function of x and y, t = t(x,y). Again, the
variation should not introduce three dimensional stress effects.

Remark 5.3 Other definitions of positive angles are used by some authors. In [Hughes, 1987] 2]
the sign of the angles are chosen to be able to use an index form of tensor notation.

[2] T.J.R.Hughes. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-
Hall, Englewood Cliffs, New Jersey, 1987.
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w(z,y)

Figure 5.1: Plate geometry. Deformation of a plate in a y cross section.

Item 2 and 4 above are inconsistent, however experience show that the model is useful in
practice. Since vi har innfgrt muligheten for at platefibrene ikke trenger a veere normalt pa
referanseplanet har vi skjeertgyninger pa tvers.




5.2. Kinematics

Displacements: Above the displacements where defined as
u(w,y,z) = sz(:v,y), U(CE,Z/,Z) = —z9x(w,y) and w(a:,y, Z) = w(x,y)

see also Figure 5.1 This can be summarized as:

Plane cross sections remains plane after deformation, but not necessarily normal to the
reference plane.

Using the displacement field it is straightforward to find:

e strains, stresses, equilibrium, and the potential energy functional.

Strains: The strains are out of plane:

[ Uy 20y 2

Eyy Vy —20zy
€= Yoy | = | Uy +vg | T _Zaz,x + zey,y

V2 Wo + U, 9y + W,

Vyz Wy + U,z =0 +wy




5.3.

It is convenient to split the strain vector in two parts:

- (2)

where €3 is the bending part:

Exx _Gy,x
Ep = Eyy = —Z ex,y = —ZK
Ty Oz —0Oyy

and €, is the shear part:
£, = =
Yyz =0, +wy
Here . is the difference between the normal fiber and the material fiber. .

Remark 5.4 The plate theaory also has microscopic inconsistencies. The normal strains, €,,,
are zero and this indicate a plane strain condition. However, the assumption o,, = 0 is more
physical. For an isotropic material this is possible only when v = 0.

The material law

The relations between stress and strains are from the relation for linearized elasticity:

o = FEe¢
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For thick plates it is convenient to split it into two parts:

B 0 Oxx
o= b _ b &b where o = Tyy and o=
o 0 E, Es

Ozy

Oz

Oyz

)

The stresses are integrated across the thickness to obtain moments and shear forces:

(&)=L= (o

where

K

€s

_t
Db:/ ’ 22Eydz and Dj = ’ E dz

t t
2 2

Note that if E, and E, are constant across the plate
t3

Dy, = EEb and D, =tE;,

Remark 5.5 To be consistent with the classical theory a shear correction factor x may be

introduced, and D, = kDj. For plates the correction factor is k =

5

G°

)

(5.3)
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5.4. Potential energy University of Oslo

The potential energy is found from the general expression for strain energy, where the internal
strain energy is written as a sum of bending and shear energy:

II(w, by, 0,) = Up(k) + Us(es) =W S e
1 ,
== / kT Dyk + el DyesdA — / quw dA Mek 4560
2Ja A Torgeir Rusten

Note that if the shear strains are zero, i.e. w,; — 0, = 0 and w4 + 0, = 0, the energy functional
is equal to the functional for thin plates.

Remark 5.6 The shear strains measure the differences in angles between a plane normal to
the axis after deformation and the actual plane given by 6, and 6,

Remark 5.7 Using (5.3) the potential energy functional becomes

1 [t
T (w, O, 0,) = 5 /A EKTEI,R-I-tEgEsES dA — /A quw dA (5.4)

Thus, when ¢ becomes small the shear term dominates the equation and shear locking occurs.
Remark 5.8 The potential energy functional is not complete, a number of boundary terms

may be added to take non homogeneous boundary conditions into account, see Hughes [Hughes, 1987].
For some terms see subsection 5.7.

ki

Remark 5.9 In order to find the correct definition of signs of the angles and definition of the
boundary condition, refer to the manual of the FEM program.



5.5. Equilibrium equations I

Recall from Chapter 4 that the functions w and @ minimizing the potential energy functional
satisfies

/ kT (¢)Dyk(0) + €l (p,v) Dyes(0,w) dA = / qudA for all ¢ and v (5.5)
A A

where @ and ¢ are vector functions

0= (0’”) and ¢ = <¢$) (5.6)
0y Py

In order to derive the equilibrium equations from the weak form Greens formula is used. It is
convenient to use the moments and shear forces in the weak formulation

/ kT (p)M(0) + el (¢, v)Q(0,w)dA = / qudA for all ¢ and v (5.7)
A A

Here
K'T(d))M = _¢y,xanc + ¢w,yMyy + (d)w,w - Qby,y)sz (5-8)

and

el (,1)Q = ¢yQuz +v.2Quz — 02Qys + vy Qus (5.9)




Greens formula is used one each moment term

/ byw My dA = / by Mz, dS — / by Mz dA (5.10)
A 0A A
/ by My dA = / o Myyn,, dS — / bp My, dA (5.11)
A 9A A
/ Gpw My dA = / p My dS — / $pMyy » dA (5.12)
A 0A A
/ gy Moy dA = / by Migyny dS — / by My dA (5.13)
A 0A A
(5.14)

and on each force therm with force multiplied with the derivative of the basis function v

/’U,szz dA = / v sznx dS — / Usz,a: dA (515)
A 0A A
/'U,yQyz dA = / v Qyzny dS — / v Qyz,y dA (516)
A 0A A
(5.17)

Collecting terms we obtain

+ / — Oy (Myzpng + Myyny) + ¢o(Myyny + Mepyng) + 0(Quane + Qyzny) dS = /qv dA
0A A
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5.6.

Setting ¢, = ¢, = 0 and v = 0 on the boundary, it follows that

6sz 8C?yz -
ox * oy

in the mid plane of the plate.

Setting ¢, = 0 and ¢, = v = 0 on the boundary, it follows that
OMyy  OMyy
Ox oy

+ sz =0
in the mid plane of the plate.
Setting ¢, = ¢y, = v = 0 on the boundary, it follows that

My, | DMy,

ox oy +Qy= =0

in the mid plane of the plate.

(5.18)

(5.19)

(5.20)

Substituting the expressions (5.2) into equations (5.18), (5.19) and (5.20) we obtain a set
of three coupled second order partial differential equations. In addition suitable boundary

conditions are required.

Boundary conditions

In order to proceed, we set ¢, = ¢, = 0 on the boundary. Then

Qzzng + Qyzny =Qn=0

(5.21)
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on (a part) of the boundary

The last term we rewrite using the normal and tangential part of the vector function (—¢y, ¢.),
i.e.
<_¢y> =nT (—%) n+ s’ <_¢y> 5= Pn+ P,s (5.22)

- ¢y(Mwwnw + Mwyny) + ¢m(sznw + Myyny)

= (_¢y ¢w) (

Using this

Mxynx + Myyny

The homogeneous boundary conditions are summarized in the table below:

Condition A B C
Clamped w = 0,=0 0s =0
Free Qn=20 M,s =0 My, =0
Simply supported, hard w=0 0, =0 My, =0
Simply supported, soft w=20 M,s =0 Myn =0
Symmetric around s Q,=0 M,s =0 0s =0
Antisymmetric around s w=20 0,=0 M, =0




Note that the clamped boundary conditions are essential conditions and is usually enforced
in the finite element space, while the free conditions are natural conditions and are part of
the functional if they are non-homogeneous. The others are a mixture of essential and natural
conditions.

In order to incorporate non-homogeneous conditions the potential energy functional can be
taken to be

1
(w, 0y, 0,) = 5 /A kTDyk + el Dye,dA - /A qudA — /S [Qnw + Mypp0s + Mys0,] ds

where Q,,, M, and M, are given quantities on the boundary. The boundary can be divided
in different pieces
S =5,USq where SwNSg=10

Similarly
S = San U SMns Where S@n m SM’"«S = w

and
S = 5p, USwm,, where So, N S, =0

Note that there are two possibilities for Simply supported conditions. In some cases the hard
condition is to strong, the model predict a stiffer plate than the soft condition.

For thin plates there was corner forces, for Mindlin-Reissner plates a substantial increase in
@, is observed for corners with soft conditions. This is more realistic than concentrated corner
forces. The increase in forces is not observed with hard conditions.
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5.7.

Not that the boundary conditions for thick plate theory are different from classical thin plate
theory.

Equilibrium equations II

Since shear strains are included, the equilibrium equations can also be derived from the three
dimensional model of solid mechanics, see MEK/550.

The equilibrium equations can be written

8(71]

Ox;

Integrating across the thickness in the x-direction of the equation becomes

/ -3 00 1 . 00yy 004,
_t

+F=0 (5.24)

F,dz =
Ox 3y+8z+ ==0

2
where the integral of o,, and o0, across the thickness is zero in our case, no axial forces.
Similarly in the y-direction. Integration of the z equation result in
_t
/ 2 00y, n Joy. 00, 0Q: = 0Qy
t

ge "oy T or T g gy TET0

Here we have used Equation 5.2, 0,, = 0 and

q. = F.dz

(SIS

t
2
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In order to derive the momentum equations, multiply Equation 5.24 with —z:

r

t
2

t

2 _z(aam n 00y n 00,
ox dy 0z

M
+Fw)dz=%+M

9 gyt Qemme =0 (5.25)

Here m, is zero in our case. For the y-direction

t

T2 00yy  Ooyy 0oy _ OMy,  OMy, B
/_ z( ox * oy + 0z +Fy)dz— ox + y +Qy ng—O

[SIES

5.8. Summary

In summary:

Highest derivative m (in the PMPE) 1

Highest derivative 2m (in the differential equation) 2

Kinematic boundary conditions 0 (w, 0y, 05)
Natural boundary conditions 1 (M, Mys, Qn)
Continuity requirements m — 1 0 (w, 0, 6y)

Note, only C° continuity is required for a finite element method.
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Oving 5.1 University of Oslo

Vis hvordan vi kommer fram til ligning Equation 5.25. Hva skjuler seg i m,? (Anta at vi har
kjente storrelser pa flaten Sy = (z,y, —t/2)U(x,y,t/2). Benytt ligningene fra elastisitetsteori.)

ODving 5.2

Varier tykkelsen pa platen gitt i Oving 4.2. Benytt ANSYS eller COMSOL Multiphysics til

a finne ut nar platen begynner & bli tykk. Benytte grenseverdiene gitt i Kapittel 4 som

utganspunkt. Mek 4560
Torgeir Rusten
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Hvordan er hjgrnekreftene sammenlignet med tynnplateteori? Benytt bade harde og myke
randkrav.

ODving 5.3
Benytt ANSYS og lgs Oppgave C15.2 i [Cook et al., 2002](1).

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.
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