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6. Finite elements for plates

This chapter discuss finite elements for the plate model for thin, Chapter 4, and thick, Chap-
ter 5, plates.

See C15.2 and C15.3 in [Cook et al., 2002][1].

6.1. Background

A number of methods used to establish plate elements are found in the literature:

1. Displacement methods:

Thin plates C1 continuity

Variational crimes and the Patch test.

Thick plates C0 continuity

Shear locking

2. Discrete Kirchhoff theory for thin plates. Introduce too many degrees of freedom, uses

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.
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kinematics and zero shear conditions to reduce the number of degrees of freedom to three
for each corner.

3. New element formulations, Free Formulation (FF), Extended Free Formulation (EFF),
Assumed Natural Strains (ANS), Assumed Natural Deviatoric Strains (ANDES), En-
hanced Strains, etc.

Satisfy the patch test, Chapter 3.

4. Hybrid stress formulations.

6.2. Thin plates: Displacement formulation

The displacements can be represented in at least two ways:

1. Interpolation:
w = Nd

where d are generalized displacements at the nodal points. (Degrees of freedom can e.g.
be rotations and bending.)

2. Generalized degrees of freedom:
w = N qq

where q are coefficients not necessarily related to nodal values.
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For conforming elements both N and N q are required to satisfy the completeness and the
compatibility criteria:

1. Rigid body motion.

2. Constant strain.
1

x y

x2 xy y2

3. The displacements must be C1-continuous, i.e. the function and both first order partial
derivatives must be continuous across interelement boundaries.

A finite element function is C1 continuous if:

• it is C0 continuous.

• the normal derivative ∂w
∂n is continuous across interelement boundaries.

Recall that the gradient along an edge can be split into a normal and a tangential derivative

∇w = (∇w)Tnn+ (∇w)T s s =
∂w

∂n
n+

∂w

∂s
s (6.1)

If a polynomial finite element function w is continuous along an edge, the tangential derivative
∂w
∂s is also continuous, thus if the normal derivative ∂w

∂n continuous, the function is in C1
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6.3. Conforming methods

We first consider some well known C1 elements, both triangular and rectangular elements.

6.3.1. Triangular elements

Argyris triangle: . . . the simplest element using polynomial basis functions achieving C1

continuity. The basis functions are quintic polynomials

1

x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x5 x4y x3y2 x2y3 xy4 y5
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This i 21 degrees of freedom! The degrees of freedom are

d =



w

θx

θy

κxx

κyy

κxy


at the corner points and

ds =

θ1θ2
θ3

 where θ =
∂w

∂n
=
∂w

∂x
nx +

∂w

∂y
ny

at the midpoints of the edges. This is 6 · 3 + 3 = 21 degrees of freedom. Note that θx and θy
is the first order partial derivatives of w and that κxx, κyy and κxy are second order partial
derivatives The element satisfies

1. C1 continuity and completeness.

2. High order of interpolation result in high order of convergence, provided the solution is
smooth.

3. Expensive if the solution is not smooth enough or the high accuracy is not required.
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4. Enforce continuity in bending, if material coefficients or thickness vary across interele-
ment boundary they are not continuous.

Note: The degrees of freedom could be taken to be directional derivatives along the element
edges instead of partial derivatives.
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Bell triangle The Bell triangle is similar to the Argyris triangles except that the polynomials
is required to be cubic along the edges. This element has 18 degrees of freedom, the corner
point degrees of freedom used for the Argyris triangle. This is an advantage in many finite
element codes that requires the degrees of freedom to be related to the corners. In addition
the work is slightly reduced.
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Bogner-Fox-Schmit rectangle The basis functions in this element are based on bicubic
polynomials, i.e. tensor products of cubic polynomials. They have 16 degrees of freedom. At
each node they are

d =


w

θx

θy

κxy


This is a conforming element, i.e. C1 continuous. The basis functions are

N =
{

1
16

(η − 1)2(η + 2)(ξ − 1)2(ξ + 2),
1
32
b(η − 1)2(η + 1)(ξ − 1)2(ξ + 2),

− 1
32
a(η − 1)2(η + 2)(ξ − 1)2(ξ + 1),

1
64
ab(η − 1)2(η + 1)(ξ − 1)2(ξ + 1),

− 1
16

(η − 1)2(η + 2)(ξ − 2)(ξ + 1)2,− 1
32
b(η − 1)2(η + 1)(ξ − 2)(ξ + 1)2,

− 1
32
a(η − 1)2(η + 2)(ξ − 1)(ξ + 1)2,

1
64
ab(η − 1)2(η + 1)(ξ − 1)(ξ + 1)2,

− 1
16

(η − 2)(η + 1)2(ξ − 1)2(ξ + 2),
1
32
b(η − 1)(η + 1)2(ξ − 1)2(ξ + 2),

1
32
a(η − 2)(η + 1)2(ξ − 1)2(ξ + 1),

1
64
ab(η − 1)(η + 1)2(ξ − 1)2(ξ + 1),

1
16

(η − 2)(η + 1)2(ξ − 2)(ξ + 1)2,− 1
32
b(η − 1)(η + 1)2(ξ − 2)(ξ + 1)2,

1
32
a(η − 2)(η + 1)2(ξ − 1)(ξ + 1)2,

1
64
ab(η − 1)(η + 1)2(ξ − 1)(ξ + 1)2

}
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They are depicted in the figure below
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This element has fewer degrees of freedom than the Argyris and Bell triangle, are less accurate
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in theory, but in practice the analytical solution of the problems frequently are not sufficiently
high to achieve the accuracy of the triangular elements. This is good choice of element for thin
plate analysis.

6.4. Nonconforming methods

The elements introduced above are based on high degree polynomials and the computation of
the element matrices are costly. Moreover, in many cases the solution of the plate problems
are not sufficiently smooth to achieve the high accuracy of the elements. Thus finite element
methods based on polynomials of lower degree could be more efficient.

To be able to reduce the order of the polynomials the C1 continuity requirement must be
relaxed. Usually the continuity of the function and the normal derivative is required at certain
points. In this case the integrals in the potential energy functional, or the weak form, is well
defined only in the interior of the elements. In practice the integrals are computed element by
element, thus this is not a problem.

Morely triangle: The simplest polynomials allowing constant strains are quadratic polyno-
mials. It has six degrees of freedom, the freedoms chosen for a forth order equation are
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w1

w2

w3

(
∂w
∂n

)
1

(
∂w
∂n

)
2(

∂w
∂n

)
3
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i.e.

d =



w1

w2

w3

θ1

θ2

θ3


where θ =

∂w

∂n
=
∂w

∂x
nx +

∂w

∂y
ny

The element do not satisfy C1 continuity, the required continuity is only enforced at certain
points.

The element

1. is complete.

2. is nonconforming.

3. satisfies the Patch test.

4. is similar to the CST element for membranes.

5. w,n is inconvenient as a degree of freedom in most finite element programs, w1
,n = −w2

,n.
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6.4.1. Rectangular elements

Adini-Clough-Melosh element: . . . the degrees of freedom are indicated on the figure
below:

x, ξ

y, η

w, θx, θy

The degrees of freedom in each node arewθx
θy

 where θx =
∂w

∂y
and θy = −∂w

∂x

Thus, the element has 12 degrees of freedom. The basis functions are polynomials composed
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of the terms (given by Adini/Clough)

1

x y

x2 xy y2

x3 x2y xy2 y3

x3y xy3

Is this a good element?

1. Straightforward to compute the basis functions N .

2. Second degree polynomial, complete.

3. Non conforming. The element is C0 continuous, since the functions are cubic along an
edge and we have four degrees of freedom to specify the function. The normal derivatives
are not continuous across inter element boundaries in general.

4. The element does not pass the Patch test.

Note: this element also has a triangular variant with nine degrees of freedom. A cubic poly-
nomial has 10 components. The term x2y + xy2 is combined to reduce the number of degrees
of freedom to nine.
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6.4.2. Summary

Conforming C1 elements are costly. For rectangular element we have not discussed isopara-
metric elements, this is not simple.

Nonconforming elements is an alternative. We have seen some, they may also be derived using
Hybride methods. The Patch test should be satisfied.

6.5. Thick plates: Displacement methods

Finite elements for plates are straightforward using elements satisfying C0 continuity.

The displacements are interpolated using

w = Nwdw, θx = N θdθx and θy = N θdθy

The elemental degrees of freedom are:

d =

dw

dθx

dθy


As we have noted before the stiffness matrix is split into a bending term and a shear terms:
tvers:

k = kb(t3) + ks(t)
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where t is the thickness of the plate. When Nw = N θ and h→ 0 the shear term will dominate.
According to thin plate theory, the bending should dominate.

This effect can be reduced by using reduced or selective reduced integration.

It can also be reduced or eliminated using different interpolation functions for the vertical
displacement, w, and the rotations, θx, θy. The Heterosis element is an example. Here the
eight node Serendipity element is used to approximate w, while Lagrange interpolation is used
for the rotations, θx, θy. (Higher order elements are also possible, see [Hughes, 1987]).

Different choices of elements are shown in Tabel 6.1.

Element evaluation: . . .

1. 9-node Lagrange element can represent pure bending (for all integration rules). Since w
have quadratic variation, zero shear deformation (γzx = 0) result in pure bending rather
than zero bending.

For linear bending, w = 0 and not cubic as required.

2. The Serendipity element is dubious for all integration rules, it does not satisfy the Patch
test.

3. The Heterosis element is frequently the best element, combined with selective reduced
integration (3× 3 for kb and 2× 2 for ks) the results are good and robust.
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Integration rule

Elementtype Type kb ks nsc ndof nm

s s
s s Bilinear R 1× 1 1× 1 2 3 4

4 node S 2× 2 1× 1 2 3 2

12 dof F 2× 2 2× 2 8 3 0

s s
s s

s
s

s
s s Lagrange R 2× 2 2× 2 8 12 4

9 nodes S 3× 3 2× 2 8 12 1

27 dof F 3× 3 3× 3 18 12 0

s s
s s

s
s

s
s Serendipity R 2× 2 2× 2 8 9 1

8 nodes S 3× 3 2× 2 8 9 0

24 dof F 3× 3 3× 3 18 9 0

s s
s s

s
s

s
s c Heterosis S 3× 3 2× 2 8 11 0

9 nodes

26 dof

Table 6.1: Integration of Mindlin-Reissner plates. Integration: R = reduced, S = selective
reduced, F = full integration. nsc = number of shear conditions in an element, ndof = number
of degrees of freedom added to a large mesh from one element, nm = number of conditions in
one element.
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6.6. Discrete Kirchhoff (DK) elements

In this formulation on begins with independent fields for displacements, w, and rotations,
(θx, θy). In this respect it is similar to the Mindlin-Reissner formulation.

In a DK formulation the shear strains, γxz = γyz = 0, are set to zero at certain points in the
element. For further details see [Cook et al., 2002][1], C15.2.

At the Department of Mechanics, University of Oslo, plate elements in practical analysis is
studied in Bjørge and Mood. The triangular DK element (DKT) are reported to achieve good
results.

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.

http://www.math.uio.no/eprint/res.rep_mech/2002/02-03.html
http://www.math.uio.no/eprint/res.rep_mech/2002/03-05.html
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Øving 6.1
Figuren viser et C0-type bjelkeelement med rektangulært tverrsnitt.

t t t-
x, u

6
z, w

- y

6

z
6
w1

6
w3

6
w2

- θ1 - θ2

� -� -

L L
� -

A
h

6
?
6
?

h
2

h
2

Virkningen av skjærtøyninger 2εxz skal tas med under forutsetningen om at plane tverrsnitt
forblir plane, men ikke nødvendigvis normale til nøytralaksen etter deformasjon. Videre antas
det at spenningene σyy = σzz = 0, og at tverrkontraksjonskoeffisienten ν = 0. Forskyvningene
i et punkt i avstand z fra nøytralaksen kan da uttrykkes p̊a følgende m̊ate

u = zθ(x) og w = w(x)

hvor θ betegner rotasjonen av et tverrsnitt. Det forutsettes at materialet har elastisitetsmod-
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ulen E og skjærmodulen G.

a) Elementet formuleres p̊a basis av

w = Nwvw der vw =


w1

w2

w3


og

θ = N θvθ der vθ =

{
θ1

θ2

}
Angi interpolasjonsfunksjonene i Nw og N θ som funksjoner av den dimensjonsløse ko-
ordinaten ξ = x

L .

b) Finn B-matrisene Bb og Bs som angir bøyetøyningene

εb = εxx =
∂u

∂x
= −zBbv

i lengderetningen og skjærtøyningen

2εs = 2εxz =
∂u

∂z
+
∂w

∂x
= Bsv

p̊a tvers av lengdeaksen. vT =
{
vTw,v

T
θ

}
.
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c) Vis hvordan en ved hjelp av virtuelle forskyvningers prinsipp eller prinsippet om mini-
mum potensiell energi kan komme fram til uttrykket for bøyestivheten kb og skjærstivheten
ks for elementet. Det er forutsatt at deformasjonen i og p̊a tvers av lengdeakseretingen
er ukoblet.

d) Vis hvordan en ved statisk kondensering kan eliminere frihetsgraden w3. kb er gitt ved

kb =
EI

2L



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 −1

0 0 0 −1 1


og ks er gitt ved

kw =
GĀ

6L



7 1 −8 −5L −L
1 7 −8 L −5L

−8 −8 16 4L −4L

−5L L 4L 4L2 2L2

−L −5L −4L 2L2 4L2


e) Hvordan kan en forbedre elementets egenskaper n̊ar høyden av bjelken h → 0. Hvilke

følger kan de foresl̊atte forbedringene f̊a for elementstivhetsmatrisen?
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f) Sett opp kravene for at et C0-bjelkeelement skal tilfredstille fullstendighetskriteriet. Til-
fredstiller dette elmentet, slik det er formulert i a), fullstendighetskriteriet? Vil elim-
ineringen av frihetsgraden w3 ved statisk kondensering endre elementets muligheter for
å tilfredsstille fullstendighetskriteriet?
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