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7. Shell models

The topic of the present chapter is circular arches and shell models. See also[Cook et al., 2002][1]

sections 16.1, 16.2, 16.4 and 16.5.

Shell constructions, and consequently shell analysis, are used frequently.

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.
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7.1. Shell behavior

Shell constructions are found frequently both in nature and in man made constructions. The
primary reason is the way shells behave.

A shell has curved inner and outer surfaces separated by a distance t, called the thickness.
The models considered here hare using the mid surface, i.e. the surface with distance t/2 from
both inner and outer surfaces, to describe the shell.

A plate carry loads through bending and high stresses, while shell constructions use relatively
moderate membrane stresses.

Plate
Shell

z

s

Some examples of constructions carrying loads using membrane stresses:
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1. Containers,

2. cylindrical roofs,

3. circular arches (Condeep platform, Colosseum movie theater),

The state of stress in the local x and y coordinates, tangential plane, can be represented as
membrane and bending stresses. In a thin-walled shell composed of a linearly elastic and
homogeneous material the membrane stresses are independent of z and the bending stresses
vary linearly with z. Bending stresses result primarily from:

1. Concentrated loads.

2. Boundaries.

3. Changes in the radius of curvature.

The bending effects are often localized near loads or disturbances that cause them, a boundary
layer.

Shell theory can be viewed as a modification of plate theory where membrane and bending
effects are coupled.

At each point of the shell mid-surface circles tangent to the surface exist. The circle with the
smallest and largest radii are the two principal radii of curvature at the point. In a cylindrical
shell one radii is constant and one is infinite, in a conical shell on is varying and one is infinite.
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If one principal radius is finite the shell is singly curved ; when both are finite the shell is doubly
curved. Different shells are:

1. Singly curved.

2. Doubly curved.

3. Prismatic.

4. Rotational symmetric.

Classic shell theory result in complicated differential equations which are difficult to solve, even
after some simplifications:

1. Love

2. Donnell

3. Flügge

4. Vlasov

...
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Classic theory is usually for thin shells:

t

R
<

1
20

are frequently based on Kirchhoff hypothesis.

Finite element analysis are usually based on one of the following three methods:

1. The shell surface is approximated using a set of plane element using both membrane and
bending plate models for each element.

2. Curved elements based on classic shell theory.

3. Mindlin-type (C0) elements. They can be modeled as a special type of three dimensional
elements with special properties to account for the small dimension in one direction.

We mainly discuss item 1, for formulations based on item 2 and item 3 the main ideas are
outlined.
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7.2. Circular arches and arch elements

In this brief introduction some of the challenges in shell modeling is outlined, for further details
see [Cook et al., 2002][1] chapter 16.2.

The model is base on a local coordinate system (s, z), where s is the tangential direction and
z is the radial.

Henceforth we assume that the arch is sufficiently thin such that shear deformation can be
neglected.

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.
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Displacements and strains: Using the figure below

R R R

t t t
z z z

u

δa

w

w

w,s

w,s

δc

the following kinematic relation can be derived:

δa
R+ z

=
u

R
, εs =

w

R+ z
≈ w

R
and δc = −z ∂w

∂s

here u is the displacements in the s-direction at the mid-plane, w is the displacement in the
z-direction at the mid-plane. It is assumed that the thickness t is small compared to the radius
of curvature.

The strains can be found from the displacements together with the strains given by the radial
displacement:

εs =
d

ds
(δa + δc) +

w

R
= u,s +

w

R
+ z

(u,s
R
− w,ss

)
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This result in

εs = εm + z κ where εm = u,s +
w

R

κ =
u,s
R
− w,ss

Membrane strain is in the mid line and is related to the membrane forces in the s-direction of
the arch. The rate of change of curvature is associated with bending moments.

Strain energy: . . . is a result of contributions from the membrane strains and curvature
change:

U = Um + Ub =
1
2

∫
`

(
EAε2m + EIκ2

)
ds

where E is the module of elasticity, A is the area of the cross section of the arch and I is the
moment of inertia about the neutral axis of bending.

Bending: Most loadings of an slender arch result in bending, but the membrane strains are
small. If t→ 0

εm = 0 thus u,s +
w

R
= 0

This is known as the the inextensibility condition.
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Membrane locking: Membrane locking refers to excessive stiffness in bending. This a
problem for some elements, and is caused by nodal displacements that should be resisted only
by bending are resisted by membrane deformations as well. Since the membrane stiffness is
much higher than the bending stiffness in a slender arch the desired bending mode tend to be
excluded from element response.

Straight elements do not suffer from membrane locking.

Membrane locking is mainly seen in curved elements with low order interpolation, e.g:

u = a1 + a2s

w = a3 + a4s+ a5s
2 + a6s

3

where ai are generalized coordinates. The strains are found from

εm =
(
a2 +

a3

R

)
+
a4

R
s+

a5

R
s2 +

a6

R
s3 κ =

a2

R
− 2a5 − 6a6s

If the element are inextensible, εm = 0,

a2 +
a3

R
= a4 = a5 = a6 = 0

The first condition a2 + a3
R = 0 result in εm = 0 for s = 0, the local midpoint of the element.

This condition cause no problems. The remaining conditions, a4 = a5 = a6 = 0, result in
w,s = w,ss = w,sss = 0. This is not true. This result in membrane locking.
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Using reduced integration, evaluating at s = 0 the condition a2 + a3
R = 0 is satisfied even if

a4, a5 and a6 are nonzero, thus using reduced integration on the membrane term membrane
locking is avoided.

Other curved elements: Exact integration may be appropriate, depending on the choice
of basis functions.

7.3. Plane shell elements

A shell can be approximated using flat elements. If the number of elements are increased a
curved surface can be approximated to any desired accuracy. A flat shell element consist of
two parts: a membrane and a plate part as indicated below.
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Shell =
Membrane

+

Plate

x
y

z

x
y

z

θx

θy

w

u
v

Note that the membrane and the plate element is established in a local coordinate system.

The two formulations:
kmdm = rem and kpdp = rep

result in the equations: [
km 0

0 kp

]{
dm

dp

}
=

{
rem

rep

}

There is no coupling between the membrane and the plate part in the local coordinate system.
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The element has five degrees of freedom in each node.

In relation to shells it may be convenient to add a sixth degree of freedom, θz.

It is customary in finite element codes that all the nodes has six degrees of freedom in a shell
formulation km 0 0

0 kp 0

0 0 0



dm

dp

θz

 =


rem

rep

0


Note that no stiffness is related to the sixth degree of freedom θz. This might cause some
trouble in the linear solver if some elements are planar.

The degrees of freedom are usually ordered consecutively for each node:

dTi =
{
u v w θx θy θz

}
I.e. two groups of vectors. The local stiffness matrix is transformed to global coordinates:{

du

dθ

}i
l

=

[
T 3 0

0 T 3

]{
du

dθ

}i
g

where T 3 is a transformation matrix from global to local coordinates. The transformation
matrix T transform the displacement for the element:

dl = Tdg
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The global stiffness matrix and load vector becomes:

kg = T TklT and reg = T Trel

Remark 7.1 If all the element connected to a node are not in the same plane, all six degrees
of freedom is assigned stiffness even if the local system has five degrees of freedom.

Remark 7.2 If all elements connected to a node is in the same plane the rotation around the
normal to the plane will have no stiffness, i.e. the stiffness matrix kg is singular:

How to avoid this?

1. Have five degrees of freedom at the node..

2. Fix this degree of freedom.

3. Add an artificial stiffness.
[Zienkiewicz and Taylor, 2000][2] propose the relations

Mz1

Mz2

Mz3

 =
1
2
αEAt

 2 −1 −1

−1 2 −1

−1 −1 2



θz1

θz2

θz3


[2] O. C. Zienkiewicz and R. L. Taylor. The finite element metod, volume 1, The Basis. Butterworth-

Heinemann, fifth edition, 2000.
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for three node shell elements. Here E is the module of elasticity, A is the element area,
t is the thickness and α is a constant. In ([Cook et al., 2002][1] a value of 0.3 or less is
indicated. Mood show the effect.)

4. Use membrane elements with drilling degrees of freedom, θz.

This also has some problems. For doubly curved shells modeled as planar elements the
rotation θz represent a problem. It is coupled to the bending rotations θx, θy, through
the neighbor elements. This is correct for piecewise planar shells, however for smooth
surfaces it result in excessive bending stiffness. This particularly problematic for bending
dominated analysis and coarse element models.

Remark 7.3 Rectangular elements has another problem related to doubly curved shells, the
four nodes are not necessarily in a plane.

7.4. Thick shell elements

Shell models can be derived based on a three dimensional model, called continuum based shell
formulation, curved isoparametric elements or degenerated volumelement.

Here we consider a curved shell formulation based on a 20 node volume element.

The formulation reduce the volume element using a three step kinematic reduction:

[1] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.

http://www.math.uio.no/eprint/res.rep_mech/2002/03-05.html
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1. Start with a 20 node volume element where the thickness is small compared to the other
dimensions.

2. The mid-plane nodes are eliminated, thus lines through the thickness is straight but not
necessarily normal to the middle plane, Mindlin-Reissner assumptions.

3. The displacements for nodes on a thickness-direction line are equal and placed in the
mid-plane. Each mid-plane node has five degrees of freedom.

The kinematic reduction is shown on the figure below.

ξ ξ ξ

η η η

ζ ζ ζ

Geometry: For a typical node, i, a thickness direction vector is established

V 3i = ti


`3i

m3i

n3i

 where


`3i

m3i

n3i

 =
1
ti


xj − xk
yj − yk
zj − zk


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The relation between the local coordinate system (ξ, η, ζ) and the global coordinates (x, y, z)
is 

x

y

z

 =
∑

Ni(ξ, η)


xi

yi

zi

+
∑ ζ

2
Ni(ξ, η)ti


`3i

m3i

n3i


The mid-plane coordinates are given by

xi =
1
2

(xj + xk)

In a Finite element program an alternative is to specify

xi, yi, zi, ti and V 3i

We also need two mutually orthogonal vectors, orthogonal to V 3i. They are tangent vectors
to the shell mid-plane. The vectors are used to define the directions of the nodal rotations
(αi, βi). Details on how to do this is found in the textbook. Note: in general these directions
vary from node to node.

Using the tangent vectors we define the matrix

µi =
[
− V 2i

‖V 2i‖
V 1i

‖V 1i‖

]
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The Jacobi-matrix: The Jacobi matrix of the mapping is used in integration and differen-
tiation. The first column is given by

x,ξ =
∑

Ni,ξ(xi +
ζ

2
ti`3i)

x,η =
∑

Ni,η(xi +
ζ

2
ti`3i)

x,ζ =
∑

Ni(
1
2
ti`3i)

Displacements: The displacements on a point on vector V 3i can be established in a local
coordinate system and transform it to a global system. This is similar to pates/beams and the
result is 

u

v

w

 = Ni



ui

vi

wi

+
ζ

2
tiµi

{
αi

βi

}
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Strains: The strains are found by differentiating the displacements. This can be written

ε =



εxx

εyy

εzz

γxy

γyz

γzx


= H



u,x

u,y

u,z

v,x
...

w,z


= Hgx

H is a rectangular matrix, see Chapter 6 in the textbook, and

gx =



u,x

u,y

u,z

v,x
...

w,z


=

J
−1 0 0

0 J−1 0

0 0 J−1





u,ξ

u,η

u,ζ

v,ξ
...

w,ζ


= J̄

−1
gξ

Since the orientation is arbitrary, all six strain components are included.

The gradient in the local coordinate system is found from the expression for displacements
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above

gξ =



u,ξ

u,η

u,ζ

v,ξ
...

w,ζ


=



Ni,ξ 0 0 − ζ
2 ti`2iNi,ξ

ζ
2 ti`1iNi,ξ

Ni,η 0 0 − ζ
2 ti`2iNi,η

ζ
2 ti`1iNi,η

0 0 0 −1
2 ti`2iNi

1
2 ti`1iNi

0 Ni,ξ 0 − ζ
2 tim2iNi,ξ

ζ
2 tim1iNi,ξ

...
...

...
...

...

0 0 0 −1
2 tin2iNi

1
2 tin1iNi





ui

vi

wi

αi

βi


= Gidi

Using this the stresses can be expressed as

ε = HJ̄
−1
Gidi = Bidi

Stress-Strain relation: The stress strain relations can be given as

σ = Eε or σ′ = E′ε′

σ are stresses in the global coordinate system (x, y, z), while σ′ are in the local system given
by [V 1,V 2,V 3]. If the material is isotropic in the local coordinate system, the stress-strain
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relations is given by 

σ11

σ22

σ33

σ12

σ23

σ31


=



E′ νE′ 0 0 0 0

νE′ E′ 0 0 0 0

0 0 0 0 0 0

0 0 0 G 0 0

0 0 0 0 G∗ 0

0 0 0 0 0 G∗





ε11

ε22

ε33

ε12

ε23

ε31


where

E′ =
E

(1− ν2)
, G =

E

2(1 + ν)
and G∗ =

5G
6

The factor 5/6 account for variation in shear strains throughout the thickness, they are close
to parabolic, not constant as we have assumed.

Note that σ33 = 0, i.e. we have assumed plane stress in the local coordinate system.

The stress strain relations E is established using E′ and a coordinate transform, see Chapter
8.2 in the textbook. The transformation of the stress strain relation can be written

E = T Tε E
′T ε

In case of numerical integration the transformation is applied for each integration point.
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Stiffness matrix: The element stiffness matrix for an N node element can be expressed

k =
∫

2

BTEB detJ d2

The efficiency of the computations can be improved, see the textbook Chapter 16.5.

Comments:

• The membrane and bending deformations are coupled for curved elements. Thus mem-
brane locking might occur.

• This is a thick shell formulation, similar to a thick plate model, thus shear locking might
occur.

• The locking problems can be eliminated by reduced integration, possibly combined with
stabilization.

• The element has five degrees of freedom per node, see the comments above on five degrees
of freedom.
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Øving 7.1
Figuren under viser en fjerdedel av et kuleskall.
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F
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• Modeller kuleskallet i ANSYS. Benytt SHELL63.

• Sett p̊a symmetribetingelser p̊a sidekantene som g̊ar fra A og B mot hullet i toppen.

• Lag et 2 × 2 elementnett og se om rotasjonsfrihetsgraden, θz lokalt, p̊avirker resultet.
(KEYOPT(3)=0, 1, 2)).
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• Benytt b̊ade trekant- og firkantelementet. Har firkantelementet problemer med at de fire
nodene ikke ligger i et plan?

• Hvilken respons er dominerende for elementet, membran eller bøyning?

• Hvordan virker SHELL93 elementet for dette problemet?
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