

Mek 4560 Torgeir Rusten

Contents			
44	$\Diamond \Diamond$		
⊲	Þ		
Page 1 of 14			
Go Back			
Close			
Quit			

Overview: 0

MEK4560 The Finite Element Method in Solid Mechanics II

(January 25, 2008)

TORGEIR RUSTEN (E-post:torgeiru@math.uio.no)

Content

0	Overview						
	0.1	Course Content	4				
	0.2	General information	5				
	0.3	Tentative Plan	6				
	0.4	Literature	8				
	0.5	Syllabus	9				
Α	Ref	erences	13				

Department of Mathematics University of Oslo

Mek 4560 Forgeir Rusten

0. Overview

The finite element method represent one of the greatest achievements in computational mechanics. Today it is the method of choice for structural analysis.

The development of super-tankers in the maritime industry and the development of off-shore installations in the Norwegian continental shelf is based on extensive use of numerical simulations based on the finite element method.

*MEK*4560, The Finite Element Method in Solid Mechanics II is a continuation of MEK4550, The Finite Element Method in Solid Mechanics I with focus on methods for analyzing structures. Some plate and shell models are introduced. Furthermore, dynamic analysis and stability analysis by linearized buckling is considered. Finally, we briefly introduce method for nonlinear analysis. (NOTE: This is tentative!)

The course is developed by Geir Skeie. I will make some minor adjustments, but for the most part the sylabus will be as before. He has also made the LaTeX styles used in the course material. The predecessor of the course was *ME356*, developed by Abdou Bobb and Magne K. Nygård. Some of their material is still in the notes.

Henrik Mathias Eiding will be responsible for the Exercises. He will give an introduction to ANSYS and answer guestions related to the use of ANSYS in the homework assignments. Alternatively, you can use COMSOL for the Exercises.

Department of Mathematics University of Oslo

Mek 4560 Forgeir Rusten

0.1. Course Content

Department of Mathematics University of Oslo

Mek 4560 Torgeir Rusten

Contents		
44	DD	
٩	Þ	
Page 4 of 14		
Go Back		
Close		
Quit		
Quit		

Content	Practical use of the element method as a tool for analysis of different structures. Extending the theoretical basis of the method when it comes to plate and shell structures, dynamic analysis, linearized buckling and plasticity.
Learning outcomes	A thorough introduction to the finite element method applied on typical structural problems. This is achieved through the use of commercial software and lectures that outlines the the- oretical basis for the program.
Formal prerequisites	MEK4550, The Finite Element Method in Solid Mechanics I or equivalent background in the finite element method.
Recommended prerequisites	MEK-INF4210, Kontinuumsmekanikk and $MEK4510$, Dynamics of Structures
Teaching:	2 + 1 hours teaching + exercises per week in one semester. Extensive use of computer programs in the exercises.
Exam	Oral.

0.2. General information

PlaceRoom B 70TimeLectures/Exercises: Wednesdays 1615-1800, starting 16. of January/Fridays 1215-1400, starting 25. of JanuaryExamHomework + oral exam.ReadingCook, Malkus and Plesha [Cook et al., 2002]^[2], Bell[Bell, 1994]^[1]
and notes.

Department of Mathematics University of Oslo

Mek 4560 Torgeir Rusten

0.3. Tentative Plan

A tentative plan for the lectures are found in the table below. The column reading refers to the chapters in the textbooks [Cook et al., 2002]^[2] and [Bell, 1994]^[1]. C1.1 refer to Cook, Chapter 1.1, similarly for Bell.

Time	Topic	Textbook	Homework	Date
0	Introduction. Computational methods and tools.	C10		16. January
1	Computational methods and tools.	C10	Ø1	23. January
2	Bjelker med skjærtøyninger (Timoshenko bjelke)	Notes, B6.1, B6.7, B6.8, C15.4	Ø2	30. January
3	Variational crimes: Reduced integration, non-compatible modes, the Patch test.	C6.6, C6.13	Ø3	6. February
4	Thin plates	Notes, C15.1, C15.2	Ø4	13. February
5	Thick plates	Notates, C13.4, C15.3, C15.5	Ø5	20. February
6	Platelements	C15.2, C15.3	Ø6	5. march
7	Shell theory	Notes, C16.1, C16.4, C16.5	Ø7	12. march

Department of Mathematics University of Oslo

Mek 4560 Torgeir Rusten

Contents		
44	DD	
٩	Þ	
Page 6 of 14		
Go Back		
Close		
Quit		

8	Dynamics: Modal analysis	C11.1, C11.2, C11.4, C11.5, C11.7	Ø8	26. march
9	Dynamics: Time integration	C11.11, C11.12, C11.13	Ø9	2. April
10	Second order effects, linearized Buckling	C18.1, C18.2, C18.5, C18.6	Ø10	9. April
11	Full ikke-lineær analyse I	Notater	Ø11	16. april
12	Full ikke-lineær analyse II	Notater	Ø11	23. April
13	Plastisitet	C17.1, C17.3, C17.4, C17.5	Ø12	30. April
14	Adaptivitet	C9.1, C9.2, C9.6, C9.8, C9.9, C9.10, C9.11	Ø13	7. May

Mek 4560 Forgeir Rusten

Contents				
44	DD			
٩	Þ			
Page 7 of 14				
Go Back				
Close				
Quit				

0.4. Literature

A list of literature in continuum mechanics, the Finite Element Method and Structural analysis is found in Appendiks 0.5.

Department of Mathematics University of Oslo

Mek 4560 Torgeir Rusten

0.5. Syllabus

The following chapters in $[Bell, 1994]^{[1]}$.

Chapter		Title	Notes
6		Special topics	
	6.1	Skjærdeformasjoner	Lesestoff
	6.7	Romlig bjelkeelement med generelt tverrsnitt	Pensum
	6.8	Det generelle bjelkeelementet	Pensum

Department of Mathematics University of Oslo

Mek 4560 Torgeir Rusten

Contents				
44	$\Diamond \Diamond$			
٩	Þ			
Page 9 of 14				
Go Back				
Close				
Quit				
Quit				

[1] Kolbein Bell. Matrisestatikk. Number ISBN: 82-519-1162-1 (ib.). Tapir, 1994.

The following chapters in $[Cook et al., 2002]^{[2]}$

Chapter		Tittle	Notes
6		Isoparametric elements	
	6.6	Incompatible modes. Nodeless D.O.F	Pensum
	6.13	Patch test	Pensum
9		Error, error estimation, and convergence	
	9.1	Sources of error	Pensum
	9.2	Ill-conditioning	Lesestoff
	9.6	Discretization error. Convergence rate	Pensum
	9.8	Mesh revision methods	Lesestoff
	9.9	Gradient (stress) recovery and smoothing	Pensum
	9.10	A-posteriori error estimate	Pensum
	9.11	Adaptive meshing	Lesestoff
10		Modeling considerations and software use	Lesestoff
11		Finite elements in structural dynamics and vibra-	Pensum
		tions	
	11.1	Introduction	Pensum
	11.2	Dynamic equations. Mass and damping matrices.	Pensum

[2] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.

Department of Mathematics University of Oslo

main interior nodes

 Torgeir Rusten

 Contents

 ∢<</td>
 ▷

 ↓
 ▷

 Page 10 of 14

 Go Back

Close Quit

	11.4	Natural frequencies and modes	Pensum
	11.5	Damping	Pensum
	11.7	Response history: Modal methods	Pensum
	11.11	Response history: Direct integration methods	Pensum
	11.12	Explicit direct integration	Pensum
	11.13	Implicit direct integration	Pensum
13		Constraints: Penalty forms, locking, and con- straint counting	
	13.4	Implicit penalty constraints and locking (Mindlin beam element)	Pensum
15		Plate bending	
	15.1	Introduction. Plate behavior	Pensum
	15.2	C^1 (Kirchoff) plate elements	Pensum
	15.3	C^0 (Mindlin) plate element	Pensum
	15.4	Mindlin beam. More devices for C^0 plate elements	Pensum
	15.5	Boundary conditions. Test problems	Pensum
16		Shells	
	16.1	Introduction	Pensum
	16.4	General shells: Three- and four-node elements	Pensum
	16.5	General shells: Curved isoparametric elements	Pensum

Mek 4560 Torgeir Rusten

Mek 4560 Torgeir Rusten

Contents		
44	DD	
٩	⊳	
Page 12 of 14		
Go Back		
Close		
Close		
Quit		

17		Nonlinearity: An introduction	
	17.1	Nonlinear problems	Lesestoff
	17.3	Plasticity: Introduction	Pensum
	17.4	Plasticity: General formulation for small strains	Pensum
	17.5	Plasticity: Formulation for von Mises Theory	Pensum
18		Stress stiffness and buckling	
	18.1	Introduction. Energy consideration	Pensum
	18.2	Bar and beam elements	Pensum
	18.5	Calculation of buckling loads	Pensum
	18.6	Remarks on stress stiffness and its use (Form of $[\mathbf{k}_{\sigma}]$. Bounds and errors.)	Lesestoff

A. References

[Bathe,] Bathe, K. J. The finite element procedures in engineering analysis. *Prentice-Hall*, 1982.

[Bell, 1994] Bell, K. (1994). Matrisestatikk. Number ISBN: 82-519-1162-1 (ib.). Tapir.

- [Belytschko et al., 2000] Belytschko, T., Liu, W. K., and Moran, B. (2000). Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Ltd.
- [Cook et al., 2002] Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. (2002). Concepts and Applications of Finite Element Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition.
- [Crisfield, 1991] Crisfield, M. (1991). Non-Linear Finite Element Analysis of Solids and Structures, Volume 1: Essentials. Wiley.
- [Crisfield, 1997] Crisfield, M. (1997). Non-Linear Finite Element Analysis of Solids and Structures, Volume 2: Advanced Topics. Wiley.
- [Felippa, 2000] Felippa, C. A. (2000). Nonlinear finite element methods. Lecture notes in NFEM. http://www.colorado.edu/engineering/CAS/courses.d/NFEM.d.
- [Felippa, 2003] Felippa, C. A. (Spring 2003). Advanced finite element methods (ASEN 5367). Graduate coarse given at Department of Aerospace Engineering Sciences. http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d.
- [Hughes, 1987] Hughes, T. J. R. (1987). The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.

Department of Mathematics University of Oslo

Mek 4560 Torgeir Ruster

Contents		
44	DD	
٩	Þ	
Page 13 of 14		
Go Back		
Close		
Quit		

[Zienkiewicz and Morgan, 1983] Zienkiewicz, O. C. and Morgan, K. (1983). *Finite Elements and Approximations*. Wiley.

[Zienkiewicz and Taylor, 2000] Zienkiewicz, O. C. and Taylor, R. L. (2000). *The finite element metod*, volume 1, The Basis. Butterworth-Heinemann, fifth edition.

