Homework assignment 3

Student name

e-mail: student@math.uio.no

3 Exercise

Part 3.1

Consider the bar construction below. The data is given in the figure, E is the module of elasticity, A is the cross sectional area, ρ is the density and ℓ is the length of the bar.

a) Use separation of variables to find the solution of the bar problem ($E A$ and ρ are constants)

$$
E A \frac{\partial^{2} u(x, t)}{\partial x^{2}}=\rho A \frac{\partial^{2} u(x, t)}{\partial t^{2}}, \quad u(0, t)=u(\ell, t)=0
$$

The initial displacement is given in the figure and $\frac{\partial u(x, 0)}{\partial t}=0$.
b) Derive an expression for the axial force, $N(x, t)=E A \frac{\partial u(x, t)}{\partial x}$.
c) What is the wave speed?
d) Plot the displacement, $u(x, t)$, as a function of x and t. (Choose $E=A=\rho=\ell=1, t \in$ $0,1 / 3,2 / 3,1)$.

Part 3.2

Solve the bar problem above using the Finite Element method. As above let $E=A=\rho=\ell=1$. (The coefficients below are adjusted for the time stepping algorithm in ANSYS, other programs may have other time stepping methods.)
a) Use default values for γ and β and compute the solution at time $t=1$. Experiment with different choices of Δt and number of elements. Compare the results to the analytical solution.
b) Using $\gamma=\frac{1}{2}$ and $\beta=\frac{1}{5}$ the time stepping method is conditionally stable. For which values of Δt is the method stable?
c) Use the integration parameters from b) and compute the Finite Element solution at $t=$ 1. What happen if Δt is larger than the critical value? (The simulation may have to be continued to a time t larger than 1 in order to observe the effect.)

Part 3.3
Consider the geometry depicted in the Figure below.

- Determine the ratio of the module of elasticity, E, to the density, ρ, such that the lowest eigenfrequency is $f_{1}=440 \mathrm{~Hz}$. Assume the construction to be free, i.e. no fixed boundary conditions. The material is isotropic with, $\nu=0.3$.
- Determine the ratio of E to ρ such that the eigenfrequency is $f_{1}=440 \mathrm{~Hz}$ when the left boundary is fixed.

Use membrane elements with depth one. First compute an approximations using beam theory.

Solution

A ANSYS input fil

