1 Solvency and pricing

1.1 Introduction

The principal tasks of an actuary in general insurance is solvency and pricing. Solvency is financial
control of liabilities under near worst-case scenarios. Target is then the (upper) percentiles ¢, of
the portfolio risk X, known as the reserve, which takes modelling and computation to determine.
Examples have been spread through several of the previous chapters, but we shall now discuss
general approaches, into which the many details arising in practice can be fed. Evaluation of the
reserve takes the entire distribution of X. Monte Carlo is the obvious, general tool. A number of
problems (but not all) are well handled by simpler Gaussian approximations, sometimes with a
correction for skewness added. Computational methods for solvency are outlined in the next two
sections.

The second main topic is the pricing of risk, not a purely actuarial subject. There is above
all a market side. A company will gladly charge what people are willing to pay! Strategic consid-
erations could influence pricing too, and there are overhead costs to cover. Yet a core is the pure
premium 7 = E(X) or Il = E(X); i.e. the expected policy or portfolio payout during a certain
period of time. Evaluations of those are important not only as basis for pricing, but also as an
aid to decision making. Not all risks are worth taking! Pricing or rating methods in actuarial
science follow two main lines. The first one draws on claim histories of individuals. Those with
good records are to be considered lower risks (premium reduced), those with bad ones the op-
posite (premium raised). The traditional approach is through the the theory of credibility, a
classic presented in Section 10.5. Alternatively, price differentials could be administered to groups
rather than individuals. What counts now is experience with the group. It could be defined
according to age, to what kind of car you own, where your residence are and so on. The nat-
ural method is regression. Solvency and pricing under re-insurance schemes are treated at the end.

Numerical examples are used extensively to give a feel for numbers and for how sensitively eval-
uations depend on assumptions. The ideas of Chapter 7 looming underneath. Risk over longer
time horizons is taken up in the next chapter.

1.2 Portfolio liabilities by simple approximation

Introduction

The distribution of the portfolio loss X becomes normal when the number of policies J — oc.
This is a consequence of the central limit theorem and leads to a straightforward assessments
of the reserve that avoid detailed probabilistic modelling (more on that below). The method is
useful due to its simplicity, but the underlying conditions are too restrictive for it to be the only
one. Normal approximations underestimate risk for small portfolios and in branches with large
claim severities. Some of that is rectified by taking the skewness of X into account, leading to the
so-called NP-version. The purpose of this section is to review these simple approximation meth-
ods, show how they are put to practical use and indicate their accuracy and range of application.

Normal approximations
Let u be claim intensity and £, and o, mean and standard deviation of the individual losses. If



they are the same for all policy holders, mean and standard deviation of X over a period of length
T become

E(X) = ayJ, and sd(X) = a1V'J;
where
Go=pTE,  and  ar = (uT)"%(0? + €)'/ (1.1)
see Section 6.3 and Exercise 6.3.1. This leads to to the true percentile g, being approximated by
@ = aoJ + a1V J (1.2)

where ¢ is the (upper) e percentile of the the standard normal distribution. Estimates of u,
¢, and o, are required for the coefficients ag and aq, but the entire claim size distribution is not
needed. Detailed modelling can at this point be avoided by using the sample mean and the sample
standard deviation as estimates éz and &,. Of course, there are many other ways.

The approximation (1.2) is also valid when pu, £, and o, depend on j. The coefficients a; and aq
are then changed to

J

T T
ap = 7 Zujfzj and ar = \j 7 Zuj(aﬁj + §§j)- (1.3)
j=1

=1

Check that they reduce to (1.1) when all parameters are equal! With all 415, §,; and o,; available
on file this method gives (when applicable) a quick appraisal of the reserve. Still another version
emerges when we regard policy holders (and their parameters) as an independent sample. The
most important special case is when p1,..., s have common mean and standard deviation &,
and o, with £, and o, being fixed. The coefficients now become

ao = uT¢z, and a1 = T?{&u(0? + &) + o2} 2, (1.4)

see (7?7) and (??) in Section 6.3.

Example: Motor insurance
The Norwegian autmobile portfolio introduced in Chapter 8 is described by the parameters

~

£, =5.6%, &, = 2.0% and £, = 0.30, 6, = 0.35,

annual parameters unit: 1000 euro

where those for claim intensity was determined in Section 8.5. Mean and standard deviation for
the loss distribution (which exclude personal injuries) were obtained from almost 7000 incidents;
see also Section 10.4. That is enough to evaluate the reserve if the normal approximation is appli-
cable. With J = 10000 policies (and 7" = 1) the coefficients a; and ag are obtained from (1.1) and
(1.6). After having looked up the Gaussian percentiles this leads to the following assessments (in
1000 euro):

Equal risk calculation Unequal claim frequency
1860, 1934 and 1860, 1935.
5% reserve 1% reserve 5% reserve 1% reserve



Money unit: Million DKK

Portfolio size: J = 1000 Portfolio: J = 100000

5% reserve 1% reserve 5% reserve 1% reserve
Normal 80 100 3860 4060
Normal power 120 160 3900 4120

Table 10.1 Normal and normal power approzimations to the reserve under
the Danish fire claims.

Note the minor impact of including risk variation among policy holders, the same message as
in Section 6.3. Even a quite substantial hetereogeneity (as in the present example) means little
for the reserve.

The normal power approximation

Normal approximations are refined by adjusting for skewness in X'. In actuarial science this is
called the normal power (or NP) approximation. In reality the NP method is the leading
term in a series of corrections to the central limit theorem, in statistics and elsewhere known as
the Cornish-Fisher expansion; see Feller (1970) for a probabilistic introduction and Hall (1992)
for one in statistics. The underlying theory is beyond the scope of this book, but a brief sketch
of the structure is indicated in Section 10.7. Only the pure Poisson model is considered below.
The extension to the negative binomial and other models is treated in Daykin, Pentikainen and
Pesonen (1994), but as has been argued earlier, the practical impact is limited.

Let 7, be the skewness coefficient of the claim size distribution. The refined approximation
then reads

_ ’Yng’ + 3§ZU§ + f}:’
a9 —

NP __  No 2
9e — 4 + CL2(¢€ - 1)/6 where 0’2 + gg ’ (15)
which is justified in Section 10.7. Inserting (1.1) for ¢J° yields
g’ = aoJ + a1V J + ay(4?—1)/6 (1.6)
the normal component NP correction '

which is a series in falling powers of v/J. The NP correction term is independent of portfolio size.

To use the approximation in practice skewness -y, must be estimated in addition to ¢, and o, (u
as well). There is no new ideas in this. We may fit a parametric family to the historical data or
with plenty of data use the sample skewness coefficient introduced in Section 9.2.

Example: Danish fire claims
Consider a portfolio for which

~

in=1% and ¢, =3.385, &, =8.507, 4, = 18.74.
annual Unit: Million DKK

The parameters for claim size are those found for the Danish fire data in Chapter 9 (one million
DKK could be around 125 000 euro). With J = 1000 and J = 100000 policies the assessments



Office type computer with pentium III processor. Implementation: Fortran 77

Portfolio size: J = 1000 Portfolio: J = 100000
Algorithm 3.1  Algorithm 3.2 Algorithm83.1  Algorithm 3.2.
Emp. dist. 0.005 0.02 0.05 0.03
Gamma 5 17 37 51

Table 10.2 CPU time (seconds) per 1000 simulations of portfolio liabiltities.

of the reserve becomes those in Table 10.1. The NP correction has considerable impact for the
small portfolio on the left, raising the 1% the reserve by as much as 60%. That is due to the
losses being strongly skewed towards the right (skewness more than 18). When the number of
policies is higher, the relative effect is smaller. With 100000 policies the difference between the
two methods is of minor importance and their almost common assessment one to be trusted.

But what about the other case? The huge impact of the NP correction on the left in Table
10.1 is ominous and should make us suspicous. Indeed, the more reliable Monte Carlo assess-
ments in the next section match neither. A simple test when using normal reserving could be to
calculate the NP term. If it isn’t very important, NP reserving probably works.

1.3 Portfolio liabilities by simulation

Introduction

Monte Carlo has several advantages over the methods of the preceeding section. It is more general
(no restriction on use), more versatile (easier to adapt changing circumstances) and better suited
long time horizons (Chapter 11). But the method is slow computationally and doesn’t it demand
the entire claim size distribution whereas the normal approximation could do with only mean and
variance? The last point is deceptive. If the portfolio size is so large that the normal distribution
provides a reasonable approximation, the claim size distribution doesn’t matter outside mean and
variance.

What about computational speed? Two simulation algorithms were presented in Section 3.3. Al-
gorithm 3.2 was the more general (risks could be unequal), but it went through the entire portfolio
and could therefore appear slower than Algorithm 3.1. An experiment to measure performance is
reported in Table 10.2 using a Fortran77 implementation of Algorithm 2.10 (Poisson), Algorithm
4.1 (the empirical distribution function) and Algorithm 9.1a (Gamma). Detailed conditions were

uT = 5% and emprirical distribution or ~ Gamma(a)
10000 historical claims a=2

The results are above all testemony to how fast the empirical distribution function is sampled,
Gamma distributions being three or four times slower. The amount of computational work in
generating the cost of claims is the same within both algorithms, and when this component dom-
inates, much of their diffences are wiped out. Among the distributions used in this book the
Gamma distribution is the most labourious one to sample.

Simulation algorithms
The computation of portfolio liabiltities is one of the most important issues in general insurance,
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Distribution Distribution

Empirical distribution Algorithm 4.1 Weibull Exercise 2.5.1
Pareto mixing Algorithm 9.2 Fréchet Exercise 2.5.2
Gamma Algorithm 9.1a,b | Logistic Exercise 2.5.3
Log-normal Algorithm 2.2 Burr Exercise 2.5.4
Pareto Algorithm 2.8

Table 10.3 List of claim size algorithms

and its seems worthwile to collect algorithms spread on several chapters. Consider a situation
where claim intensities u1,...,us are stored on file along with claim size distributions. If Algo-
rithm 2.10 are used for the Poisson sampling, the programming steps can be organized as follows:

Algorithm 10.1 Portfolio liabilities in the general case

0 Input: Poisson parameters A\; = u;T (j =1,...,J), claim size models, H(z).
1X*«0

2Forj=1,...,J do

3 Draw U* ~ uniform and S* + —log(U™)

4 Repeat while S* < A;

5 Draw claim size Z* % Might depend on j
6 X*«— X*+H(ZY) % Add loss,

7 Draw U* ~ uniform  and S* < S* —log(U*)  %Update for Poisson
8 Return X*

Poisson sampling has been integrated into the code. The algorithm goes through the entire
portfolio and add costs of settling incidents until the citerion on Line 4 is not satisfied. There are
many different algorithms for Line 5. Table 10.3 lists examples from this book.

Danish fire data: Sensitivity against claim size model

The Danish fire data was examined in Section 9.6 and a number of models were tried. Some
seemed to work well, others did not. Table 10.4 shows how the fit or lack of it is passed on to
the reserve. Models considered were the empirical distribution function without or with Pareto
mixing for the extremes, Pareto, Gamma and log-normal. All were fitted the historical fire claims
as described in Chapter 9. The portfolio size were J = 1000 with annual claim rate i = 1%,
producing no more than 10 claims per year on average. Ten million simulations were used, making
Monte Carlo uncertainty very small indeed.

The situation is then identical to the one on the left in Table 10.1 and testfies to the diffi-
culty of calculating the reserves for small portfolios when the shape of the claim size distribution
matters. On its own the empirical distribution function underestimates risk, but mixed with the
Pareto distribution it seems to work well and is not overly dependent on where the threshold & is
placed. The Gamma distribution on log-scale fitted well in Section 9.5 and lead to similar results.
Others that were grossly in error, also leads to strongly deviating reserves. If you compare with
the normal power method in Table 10.1 you will discover that it over-shoots at level 5% and



®EDF: The empirical distribuiton °Thresholds are 50%, 25%, 10%, 5% ¢ Log-transformed claims

EDF?¢ EDF?® with Pareto above b° Other claim size models
Reserve b=10 b=5.6 b=3.0 b=1.8 | Pareto GammaF® Log-normal
5% 72 100 104 105 100 71 94 49
1% 173 200 217 230 225 137 214 61
0.03% 330 590 870 1400 1750 900 1944 84

Table 10.4 Calculated reserves for the Danish fire data. Money unit: Million
DKK (about 8 DKK for one euro).

under-shoots at 1%.

Reserves at level 0.03% have been added. Luckily those figures are not in demand! The re-
sults are a bewildering mess of unstability. What this shows is the extreme difficulty of producing
assessments very far out into the tails of a distribution where they become sensitively dependent
on modelling details. Although such tiny percentiles are rarely needed with insurance liabilities,
they are used by the bureaus rating financial soundness.

1.4 Differentiated pricing I: Using the observable

Introduction

Very young male drivers or owners of fast cars are groups of clients notoriously more risky than
others, and it is hardly unfair to charge them more. These are examples of pricing unequally
based on experience. The technological development which enhances our possibilities of collecting
and storing information with bearing on risk, can only further this practice. Historical records of
insurance incidents and their cost are then tied through statistical techniques to circumstances,
conditions and people causing them. Among the methods available log-linear regression is ar-
guably the most important one. The purpose of this section is to indicate how Poisson, Gamma
and log-normal regression from earlier chapters are put to use.

Explanatory variables are then identified as observations, registrations or measurements xi . .., Z,
and linked to claim intensity 4 and mean loss per event ¢ through

log(p) = buoxo + ... + buyTy and log (&) = beozo + - .. + beyo,

where b,0,b,1 ..., and bgg, b1, - . . are coefficients. By default zo = 1, a convention introduced to
make formulae neater. The explanatory variables by no means have to be the same for both
and &, but the mathematics becomes simpler to write down if they are, and we can always ‘zero’
irrelevant ones away; i.e. take bg; = 0 if (for example) z; isn’t included in the regression for §. In
motor insurance (example below) the relationship is typically more important for p than for €.
Inserting the regression equations for y and ¢ into the pure premium 7 = € yields

m = exp(n) where 1= (buo + beo)zo + - .. + (buv + bey) Ty,

where the time of exposure T' = 1; for general T see Exercise 10.4.1.



Estimates of the pure premium
The regression coefficients are in practice replaced by estimated ones b,; and bg;. The pure pre-
mium of a policy with z1,...,xz, as explanatory variables is then evaluated as

7 = exp(n) where N = (i)uo + Bgo)wo +...+ (i’uv + B@)%-

Commercial software will typically be used to determine the coefficients from historical data (see
Section 8.4 and 9.3). Assessments of their error are also provided, but they must be passed on to
the estimate of the pure premium itself, and you should know how that is done. Bootstrapping
(Section 7.4) can be used (as indeed always), but there is also a simpler technique available if there
is enough historical data. The estimated regression coefficients are then approximately normal, 7
(their sum) becomes nearly normal too and # has the statistical properties of a log-normal. Take
a robust attitude towards the normality assumption. High accuracy in error assessments isn’t
that important.

There are two sets of estimated coefficients (13“0, e 78#11) and (I;go, e ,Bgv) coming from two differ-
ent regression analyses. It is usually unproblematic to assume independence between sets, whereas
dependence within may be very strong indeed. With o;; = cov(lA)uilA)”j) and og;; = cov(lA)gilA)gj)
mean and variance of 7) are approximately
v v
E(n) =n and 2= var(7) = Z Z zix(ouij + O¢ij),
i=0 j=0

where the variance formula (??) in Appendix A has been used. This is passed on to @ by the
usual formulae for the log-normal; i.e.

E(7) = mexp(1?/2) and sd(7) = E(#)y/exp(7?) — 1.

Note that E(#) > m, and 7 is biased upwards. but usually not by very much (see below). Bias
and standard deviation is estimated by

v v
W 22 . A2 p N N N
#(e™ /2 — 1), wel 12\/et? — 1 where 72 = E E %% (6 pij + Ogij)-
bias standard deviation 1=0j=0

and were 6,;; and G¢;; are estimates (standard software makes them available). In the formula
for 72 take 0¢ij = 0 or 6¢;; = 0 when variable ¢ or j is absent.

Designing regression models
Log-linear regression is a general tool that offers many possibiltities within a framework that adds
contributions on logarithmic scale. On the natural scale such specifications are of the form

/’L = ,UO . e(bllzl +b€1)$1 e e(bll/u'l'bgv)wv Where l’l’O — eb#0+b§0.
baseline variable 1 variable v
Here pg is claim intensity when 7 = ... = z, = 0, a useful interpretation. The explanatory

variables drive intensities up and down independently of each other compared to this baseline.
As an example suppose z1 is binary with 0 for males and 1 for females. Then

Um = Moe(b;ﬂ'i'b{v)m? e e(bﬂv+b§v)wv and 'uf — uoebltl +b§1 e(blﬂ"’b{v)w? P e(b,uv'i'b&))wv,

for males for females



@ Estimated shape of the Gamma distribution: & = 1.1

Intercept Age
< 26 > 26
Freq. -2.43 (.08) 0 (0) -0.55 (.07)
Size*  8.33 (.07) 0 (0) -0.36 (.06)

Distance limit on policy (in 1000 km)

12 16 20 25-30 No limit
Freq. 0 (0) 17 (.04)  0.28 (.04) 0.50 (.04) 0.62 (.05) 0.82 (.08)
Size® 0 (0) 02 (.04)  0.03(.04) 0.09 (.04) 0.11 (.05) 0.14 (.08)

Geographical regions with traffic density from high to low
Region 1 Region 2 Region3  Region4  Region 5  Region 6
Freq. 0 (0) -0.19 (.0.4) -0.24 (.06) -0.29 (.04) -0.39 (.05) -0.36 (.04)
Size® 0 (0) -0.10 (.0.4) -0.03 (.05) -0.07 (.04) -0.02 (.05) 0.06 (.04)

Table 10.5 Estimated coefficients of claim intensity and claim size for automobile
data (standard deviation in parenthesis). Methods: Poisson and Gamma regression.

and pf/pm = ebritber i fixed and independent of all other covariates. The model permits no
interaction between explanatory variables. The female drivers in Section 8.3 who were more
reliable than men when young and less when old is not captured by this.

Modifications are possible. One way is to design suitable crossed categories, a little like age
was divided into groups in Section 8.4, see Exercise 10.4.2. The problem with such procedures is
that the number of parameters grows rapidly. We shall below examine an example with three vari-
ables consisting of 2, 6 and 6 categories. The total number of combinations is then 2 x 6 x 6 = 72
which may not appear much when the historical material is over 200000 policy years. On average
each group would have around 2500 policy years behind it, enough for fairly accurate assessments
of claim intensities by the elementary estimate (??). The problem is that historical data often
are very unequally divided among such groups which leads to much random error in some of the
estimates. Simplifications through log-linear regression enables us to dampen random error; see
also Exercise 10.4.3.

Case study: The Norwegian automobile portfolio

A useful case for illustration is the Norwegian automobile portfolio of Chapter 8. There are around
100000 policies extending two years back with much customer turnover. Almost 7000 claims were
registered as basis for claim size modelling. Explanatory variables used are

e age (2 categories that were < 26 and > 26 years)
e driving limit (6 categories)

e geographical region (6 categories).

Driving limit is a proxy for how much people drive. Age is simplified drastically compared to



Age Distance limit on policy (in 1000 km)
80 120 160 200 250-300  No limit
< 26 years 365 (6.3) 442 (6.8) 497 (7.5) 656 (8.3) 750 (9.0) 951 (9.8)
> 26 years 148 (2.9) 179 (3.0) 201 (3.7) 265 (3.7) 303 (4.1) 385 (4.3)

Table 10.6 Estimated pure premium (in euro) for Region 1 of the
Scandinavian autmobile portfolio (standard deviation in parenthesis)

what you would use in practice. If interaction is neglected, the regression equation for y becomes

log(p) = by + bumt + X0 obu(i)ze(d) + Xi_pbu(d)as(i),

age distance limit region

with a similar relation for £&. Coding is the same as in Section 8.4. Note that z; is 0 or 1 according
to the whether the individual is below or above 26. ts of young people appear to be both more
frequent and more severe. Regression methods used were Poisson (claim frequency) and Gamma
(claim size).

Estimated parameters are shown in Table 10.5. They vary smoothly with the categories. As
expected, the more people drive and the heavier the traffic the larger is the risk. Claim frequency
fluctuates stronger than claim size (coefficients larger in absolute value). Accidents of young peo-
ple appear to be both more frequent and more severe. The results in Table 10.5 yield estimates of
the pure premia for the 72 groups along with their standard deviation, as explained above. Those
for the region with heaviest traffic (Oslo area) is shown in Table 10.6. Estimates are smooth and
might be be used as basis for a pricing policy. The log-normal bias varied from 0.2 to 0.5, much
smaller than the standard deviation in parenthesis in Table 10.6.

1.5 Differentiated pricing IT: The individual record

Introduction

The preceding section differentiated premium between groups, though in a rather crude way:
Within a given group, the same to everyone! Is that fair? Perhaps, and yet personal factors we
don’t observe make real risk vary. Could it be possible to detect risky customers from their own
track record? Individual claim history may be good (no claims at all) or bad (very costly ones in
the past). We might reject those that present heavy claims all the time, but perhaps it would be
equally good to raise premium instead. But then by how much? That is the kind of question now
addressed.

Formally the problem is as follows. Let X;i,..., Xk be the annual claims from a policy holder
after K years in the company. Many of those, perhaps even all, would be zero. How should that
record, whether good or bad, influence premium charged? If such a problem could be solved, no
client would be unwelcome. The risky ones would be answered by sky high rates! Such a rosy
picture is only theory, but the problem has nevertheless an elegant solution, known as the theory
of linear credibility.

Credibility: The approach
Every policy holder is carrier of a list of attributes with impact on risk. Variables like age, sex, or



geographical location are relevant, but those are easily observable and therefore better handled
through regression methodology. What we have in mind are factors like general ability, power of
concentration, recklesness or practical experience. All these things influence the performance of
drivers of automobiles and cause risk to vary over the population. Such factors can’t be measured
or quantified. Their inventory is endless, but luckily details are not needed. It is sufficient to
postulate their existence and define the distribution of the risk X conditionally given a certain
underlying w. Expectation and standard deviation then become

7m(w) = E(X|w) and o(w) = sd(X|w).

conditional pure premium

(1.7)

— —_—

If m(w) is an estimate of 7(w), the premium charged might be (1 + )7 (w), where « is a suitable
loading.

To derive the estimate it may appear natural to factorize the individual pure premium in the
usual manner as

m(w) = p(w)E(Z|w), (1.8)

where both claim frequency p(w) and expected claim size E(Z|w) depend on w. This approach is
not the common one. The traditional theory of credibility starts from the aggregated (typically
annual) claim records X1,..., Xk and attacks m(w) directly without the factorization (1.8), but
see Exercise 7.

Credibility: Assumptions and modelling
A long string of conditions is not required. We shall treat w as a random variable (or vector).
This is plausible and leads to the common factor model of Section 6.2; i.e.

e X, ..., Xk are identically and independently distributed given w.

Independence given w follows a main line in property insurance modelling. Note that X1,..., Xg
are dependent as we observe them, since they are tied to the same w. Indeed, that is the reason
past claims X7, ..., Xk say anything about a future X at all. Their distribution would not be the
same if learning is involved (young drivers gaining in experience, for example); see Sundt (1991).
Such extensions will not be covered.

We need the so-called structural parameters to work from; i.e.
¢ = E{n(w)}, v? = var{r(w)}, 2 = E{o?(w)}. (1.9)

Here ( is the average pure premium over the entire population policy holders. Both v and 7 rep-
resent variation. The former is caused by diversity between individuals; the latter by the actual
physical processes underlying the incidents. How the structural parameters are estimated from
historical data is shown below.

The two important relationships

E(X)=¢ and var(X) = 72 + v? (1.10)
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will be needed later. They are easily derived from the rules of double expectation and double
variance in Section 6.3. First note that

E(X) = F{E(X|w)} = E{n(w)} =,
and then
var(X) = E{var(X|w)} + var{ E(X|w)} = E{O’Q(w)} +var{n(w)} = 2 102,

Estimation by linear credibility
An estimate 7(w) of m(w) can be derived from the data record Xj,..., Xk and the structural
parameters £, v and 7. The standard construction is to minimize mean squared error

Q = E{n(w) — m(w)}*.
This yields (see Section 6.4) the solution
m(w) = B{n(w)|X1,-.., Xk},

known as the general credibility estimate. Although the most accurate estimate possible, it also
requires much more detailed modelling. However, there is a linear alternative. Now the estimate
is of the form

—_—

mg(w) =by+ b1 X1 + ...+ b Xk,

where by, b1, . .., bi are coefficients determined so that () is minimized. The advantage is that no
more than the three structural parameters are needed.

The symmetry of the problem forces all of by,...,bx to be equal. This must be so since all
of Xi,..., Xk carry exactly the same amount of information. But then the best estimates must
be of the form

— _

7 (w) = by + bX where X=(X1+...+Xg)/K. (1.11)

The coefficients by and b minimizing (Q is derived in Section 10.7, leading to the linear credibility
estimate

— 02

=(1- X h = . 1.12
Tr(w) = (1 —w) +wX, where w T 2K (1.12)
Here w is a weight between zero and one, defining a compromise between the average pure pre-
mium ¢ = F{7(w)} and the data record of the policy holder. There is a close resemblance between
this solution and the Bayes estimate of the normal mean in Section 7.6.

The estimate can be understood from many angles. A first observation is that w increases with the
track record K; i.e. experience counts for more if the customer have been with us for a long time.
If the client is new (K = 0), then w = 0 and mp(w) = ¢. With no information available the best
that can be done is to use the population average. For other interpretations, see Exercises 7 and 7.
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Statistical properties
Estimation error in the linear credibility estimate is summarized by

—

E{nrg(w) —m(w)} =0 (1.13)

and

—_—

sd{rg(w) — 7(w)} = vk, where vk = (1+ Kv?/72) /2 (1.14)

see Section 10.7 for the proof. The linear credibility estimate is unbiased, but as least as important
is random error. From (1.14) note that

sd{vr;/(\\w) — W)} _ kv _ Vi
sd{mo(w) — m(w)} N0V

and i conveys the benefit of the historical record X7, ... Xx. What its size might be is indicated
next.

Example: When claim intensity varies

Consider a portfolio for which the the claim size distribution is the same for everybody, but where
the claim size intensity varies randomly between individuals. In motor insurance this captures
much of what goes on. Identify y with w and introduce

B =&, sd@) =0, and  B(Z)=&, sd(Z)=o..
For an individual with intensity p observed over T'
w(n) = E(X|u) = uT¢  and o (n) = var(X|u) = uT(€ + 02);
see Exercise 6.3.1. The structural parameters (1.9) then become
(=&Te v =T 1T =gT(E +07),
and when these expressions are inserted into the coefficient yx in (1.14), we obtain
i = (1+K0,Tay,/¢,) where 0, =¢&2/(& + 02).

Accurate estimation of 7(u) requires yx to decline fast as K is raised, and since €, < 1, much
hinges on the ratio ai /&, Variability in p has to be quite large for this quantity to be anything
but quite small. For the automobile portfolio used earlier £, = 5.6% and o, = 2% annually (thus
T = 1), and if £, = 10000 and o, = 1000, the standard deviation of the credibility estimate
becomes

sd{rg(w) — m(w)} = 200 193 187
K=0 K=10 K=20

These are huge errors when

¢ = B{m(u)} = 10000 x 0.056 = 560.

12



Even 20 years of experience with the same client hasn’t reduced uncertainty much. Credibility
estimation is an ambitious project of charging premium fair, but it clearly can’t be used indis-
criminantly.

Finding the structural parameters
Historical data might be of the following form:

1 i1 ... T1K, 1 81

J Tj1 --- TJK; Ty Sy

Policies Annual claims mean  sd
There are J policies that have been in the company Ki,...,K; years. Annual claims from
client j are zj1,...,%k;, i.e. the j’th row of the table, from which mean z; and standard devia-

tion s; can be calculated. Let K = K + ...+ K. Unbiased, moment estimates of the structural
parameters are then

1L X
(=g 2Kz, =) (K= 1)s (1.15)
Jj=1

and

o SIUG/K) (@ — 62— #2(T ~ 1)/K (1.16)
- 1- JJ':l(Kj/}C)2 . .

verfication is given in Section 10.7. The expression for 2 does not have to is positive. If it
isn’t, the pragmatic (and sensible) position is to assume v = 0. Variation in the individual pure
premium over the portfolio is then too small to be detected.

1.6 Re-insurance

Introduction

Re-insurance (introduced in Section 3.2) deals with primary risks placed with a cedent who
passes some of it on to re-insurers who may in turn go to other re-insurers. At the end there is
global network of players dividing risk between them. Re-insurers provide cover to incidents far
away both geographically and in terms of intermediaries, but for the original clients at the bottom
of the chain all of this is irrelevant. For them re-insurance instruments used higher up are without
importance as long as the companies involved are solvent. For cedents these arrangements are
ways to spread risk and may also enable small or medium-sized companies to take on heavier
responsibilites than its capital base in itself would allow.

Methods change little compared to ordinary insurance. Primary risk rests with the cedents,
and their modelling is (of course) the same thing. Cash flows differ, but those are merely modi-
fications through fixed functions H(z) containing the payment clauses and are easily handled by
Monte Carlo (Section 3.3). Economic impact may be huge, the methodological not. The purpose
of this section is to outline some of the most common contracts and indicate consequences for
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pricing and solvency.

Types of contracts

Re-insurance can be seen as expenses shared between two or more parties. Contracts may apply
to costs of settling single events or to sums of claims affecting the entire portfolio. These losses
(denoted Z and X) are then (in obvious mathematical notation) divided between re-insurer and
cedent according to

Ze=H(Z), Z*=Z—H(Z) and X*°=H(X), X°=X-H(X), (1.17)

single events on portfolio level

where 0 < H(z) < 1. Here Z°® and X°® are the net responsibility of the cedent after the re-insurer
reimbursements have been subtracted.

One of the most common contracts is the a X b type considered in Chapter 3. When drawn
up in terms of single events re-insurer and cedent responsibilities are

0, ifZ<a Z, ifZ<a
Z*= Z—a, fa<Z<a+b and Z“ = a, fa<Z<a+bd
b—a, ifZ>a+b. Z—b, ifZ>a+b,

Note that Z™ 4+ Z°=Z. The lower bound a is the retention limit of the cedent who must cover
all claims below that threshold. Responsibility (i.e. Z°®) appears unlimited, but in practice there
is usually a maximum insured sum S that makes Z < S. If ¢ and b are taylored to S, the scheme
gives good cedent protection. If the upper bound b (the retention limit of the re-insurer) is infinite
(rare in practice), the contract is known as excess of loss. The a X b re-insurance is also used
with the aggregated claim X against the portfolio. The expressions for X™ and X' are similar
to those above. If b is infinite, the treaty is now known as stopp loss.

Another type of contract is the proportional one for which

Ze=cZ, Z°=(1-2) and Xre=cX, X°*=(1-¢X

single events on portfolio level

(1.18)

Risk is now shared by cedent and re-insurer in a fixed proportion. Suppose there are J separate
re-insurance treaties, one for each of J contracts placed with the cedent. Such an arrangement
is known as quota share if the constant of proportionality ¢ is the same for all policies. In the
opposite case we are dealing with surplus re-insurance if ¢ = ¢; is of the form

B a e 0 ifa > S;
¢; = max(0,1 — S_J) so that zZ; = (1—a/S,)2; ifa< S, (1.19)

Here S; is the maximum insured sum of the j'th primary risk. Note that a (the cedent retention
limit) does not depend on j. As §; increases from a, the re-insurer part grows.

Pricing re-insurance
Examples of pure re-insurance premia are

e =uTEe for &= E{H(Z)} and I = E{H(X)}.

single event contracts contracts on portfolio level
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Their approximations through Monte Carlo (m runs) are

1

re* — L E ( ) a,nd Hre* - E ;11 H(XZ*)’

single event contmcts contracts on portfolio level

and usually this is the simplest way to do it. If you know the ropes, it often takes less time
to implement Monte Carlo than to work out exact formulas, and of course, the latter may be
impossible. On portfolio level simulations X* of the total portfolio loss (obtained from Algorithm
3.1 and 3.2) are inserted into the re-insurance contract H(x)

For a x b contracts in terms of single events there is a useful formula. If f(z) and F(z) are
density and distribution function of Z, then

g :/:er(z—a)f(z) dz+/:bbf(z)dz

a-l—b
= —(z—a){1-F }| +/ {1-F(2)}dz+b{1-F(a+b)} = / {1-F(2)}dz

after integration by parts. Writing F'(z) = Fy(z/5) as in Section 9.2 yields

7 = uT / - Fy(2/B))de, (1.20)

which is is possible to evaluate under the Pareto distribution; i.e. when 1 — Fy(2) = (1 + 2) .
Then

re __ 5 1 — 1 or (8%
=TT <<1+a/ﬂ>a—1 (1+(a+b)/ﬂ)°‘—1) f > 0. (1.21)

Special treatment is needed for a = 1. Numerical example:
pT =1%, a="50, b=500 a =2, =100 gives 7 = 0.50,

which was reproduced to two decimal places with m = 100000 simulations. Monte Carlo standard
deviation was 0.003 and three decimals would need around m = 10 million.

Effect of inflation

Inflation drives claims upwards into the regions where re-insurance treaties apply, and contracts
will be mis-priced if the re-insurance premium is not adjusted. The mathematical formulation
rests on the rate of inflation I changing the parameter of scale from 8 = y to 8y = (14 1), see
Section 9.2. As the rest of the model is unchanged, it follows from (1.20) that the corresponding
pure premia 7§ and 7y are related through

T ML= Fo(/Br)}dz
TS M1 - Fo(2/fo)}dz

which applies to a x b contracts in terms of single events. How other types react to inflation is
studied among the exercises.
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Number of simulations: One million

Annual claim frequency: 1.05 Annual claim frequency: 5.25
Upper limit (b) 0 2200 4200 10200 0 2200 4200 10200
Pure premium 0 82 92 100 0 410 460 500
Cedent reserve 2170 590 510 480 6300 3800 1800 1200

Table 10.7 Re-insurance premium and net cedent reserve (1%) under the conditions
in the text. Money unit: Million NOK (8 NOK for 1 euro).

For Pareto models with infinte b it follows from (1.21) that

T 1+afy? ot
re_(1+1)<1+aﬂ61/(1+1)> |

This is not negligable for values of « of some size; try some suitable values if I = 5%, for example.
It is also an increasing function of « which means that the lighter the tail of the Pareto distribution,
the higher the impact of inflation. That appears to be a general phenomenon. Another example
is

Zy ~ Gamma(a) and Zr = (1+1)Zy,

orginal model inflated model

and the pure premia 7" and 7}° can be computed by Monte Carlo. When the upper limit b is
infinite and I = 5%, the relative change (77 — 7f°) /7 was found to be

9% 23% 76% 17% 46% 169%
a=1 a=10 a=100 and a=1 a=10 a =100
a median of Z a upper 10% percentile of Z,

Note the huge increase in the effect of inflation as « moves from the heavy-tailed @ = 1 to
the light-tailed, almost normal o = 100.

Effect on the reserve

Re-insurance may lead to substantials reductions in capital requirements. Money is lost on aver-
age, but since the cedent company can get around on less own capital, its value per share could
be higher. There is here a decision to be made which must balance extra cost against capital
saved. An illustration is given in Table 10.7. Losses were those of the Norwegain pool of natural
disasters in Chapter 7 for which a possible distribution was

Z ~ Pareto(a, ) with a=1.71 and S = 140.

Re-insurance was a a X b arrangement with a = 200 and b varied. Maximum cedent responsibility
per event is § = 10200. Monte Carlo was used for computation.

Table 10.7 shows cedent net reserve against the pure re-insurance premium. With claim fre-
quency 1.05 annually (the actual case) the 1% reserve is down from 2170 to about one fourth
in exchange for the premium paid. When claim freqeuency is five-doubled, savings is smaller
in percent, but larger in value. How much does the cedent lose by taking out re-insurance? It
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depends on the deals available in the market. If the premium paid is (1 + )7 where 7 is pure
premium and 7 the loading, the average loss due to re-insurance is

14+ - s = .

premium paid claims saved net loss

In practice 7 varies enormously. During the decade around the turn of the century the loading
went from barely more than zero to 100% and even 200%!

1.7 Mathematical arguments

Section 10.2

The normal power approximation: The NP approximation of Section 10.2 is a special case of
the Cornish-Fisher expansion (Hall 1992) which sets up a series of approximations to the percentile
ge of a random sum X. The first two are

@ = BX)+sdX)p  +  sdX)L(gE - Dskew(X).

normal approximation skewness correction

(1.22)

A fourth term on the right would involve the kurtosis, but that one isn’t much in use in prop-
erty insurance. The approximation become exact as the portfolio size J — oo. Relative error
is proportional to J~!/? (skewness omitted) and to J~! (skewness included), which means that
skewness adjustments typically enhance accuracy considerably.

Suppose X is the total portfolio liability based on identical Poisson risks with intensity u and
with £,, o, and vy, as mean, standard deviation and skewness of the claim size distribution. Mean,
variance and third order moment of X are then

E(X)=JuTE,  var(X)=JuT(0; +€5),  us3(X) = JuT(1.07 +307€, +€),
where the third order moment is verified below (the other two were derived in Chapter 6, see
Exercise 6.3.1). Skewness is u3(X)/var(X)32, and some straightforward manipulations yield

1 ’72‘72 + 3‘7252 + fg’
(HT)? (o2 4 2P

skew(X) =

The NP approximation (1.6) follows when the formulae for sd(X) and skew(X) are inserted
into (1.22).

The third order moment of X Let A = JuT be the Poisson parameter for the total number
of claims A. The third order moment of u3(X) is then the expectation of

{X = 2P = {(X = NE&E) + (W = NE}? = By + 3By + 3Bs + By

where

B, = (X _N£Z)3a By = (X _Ngz)Q(N - /\)gza
By = (X - N&)WNV - V)%, By = (N =M€

Expectations of all these terms follow by computing the conditional expectation given N and
applying the rule of double expectation. This is simple since X is a sum of identically and
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independently distributed random variables. Start with B;. It follows from a result in Appendix
A that the conditional third order moment of X is A times the third order moment of Z. Hence

E(Bi|N) =N(EZ — £,)® = Nv,02 which yields E(By) = My,03.
Similarly, from the sum of variance formula
B(BN) =NoX(N—N&.  and  B(By) = BN(N — A)}o2€, = Ao%%..
It has here been utilized that E{N (N — A\)} = var(N') = A\. For the two remaining terms
E(B3|N) =0 so that E(B3) =0
and
E(Bs) = BN = \°€ = ps(N)¢2 = Ae2
since p3(N) = \; see Section 8.3. Tieing all these expectations together yields
E(X = X¢:)° = E(B1) + 3E(By) + 3E(Bs) + E(By) = A(1:07 + 307¢; +£2)
which is u3(X).
Section 10.5

The objective is to derive the linear credibility estimate as an optimum one, verify its statistical
properties and justify the estimates of the structural parameters.

Statistical properties of X. Three auxiliary results on the distribution of the average claim
are needed:

E(X)=¢(, var(X) = v? + 12/K cov{X,m(w)} = v? (1.23)

The expectation follows from E(X) = E(X;) = ¢. To derive the variance note that
E(X|w) = E(X1|w) = 7(w) and var(X|w) = var(X1|w)/K = 0?(w)/K,

and the rule of double variance yields

_ _ _ 2
var(X) = var{ E(X |w)} + E{var(X|w)} = var{n(w)} + E{c?*(w)/K} = v* + %,
as asserted. Finally for the covariance

E{(X —n)(n(w) - n)lw} = B{X - nH{n(w) —n} = {n(w) —n}?,

and by the rule of double expectation

E{(X —n)(r(w) —n)} = E{n(w) —n}* =,
and the term on the left is cov{X, r(w)}.

—

The credibility formula Let m(w) be the estimate in (1.11). Then

—

m(w) = m(w) = by + bX —m(w) =bg — (1 = b() + b(X — () — (7(w) — ¢)

18



after a little reorganization. Hence

{m(w) = (W)} = {bo — (1 = b)Y + b*(X — O)? + (w(w) — ¢)?
+2{by — (1 = bO)HX — ¢) +2{bo — (1 — b))} ((w) — ¢) — 2b(X — ) (w(w) — C),

—

and Q = E{r(w) — m(w)}? is calculated by taking expectation on both sides. Since E(X) = ¢
and E7(w) = ¢, this yields

Q = (bo — (1 — b¢)? + b*var(X) + var{n(w)} + 0 + 0 — 2bcov{X, w(w)}
and after inserting (1.23) (middle and right) and v? = var{m(w)} we obtain
Q= (bo— (1 —b)O)* + (v +712/K) + v — 200

This is minimized by taking
2

0 ¢ a v v+ 72/K’

the solution of by being obvious and that for b being found by differentiation afterwards. This
yields the credibility estimate 7 (w) defined in (1.12).

The statistical properties Unbiasedness is a consequence of

—

B{rg(w)} = E{(1 —w){ +wX} = (1 - w){ + wB(X) = (1 —w){ + w( =

which equals E{w(w)}. The variance of the error is calculated by inserting by = 1 —wé and b = w
in the expression for ). This yields

v2 2 9 9 v2 V272K
S . G K 2_9 2 =
@ <02+72/K W™+ m°/K) +v U2+7'2/KU v2+72/K’
so that
. 2
Blrgw) —mw)}? = Q= 57y
K 1+ Kv?/72

as asserted in (1.14).

The estimates of £, 7 and v.
We shall examine the estimates (1.15) and (1.16). The principal part of the argument is to verify
unbiasedness. For (, defined by (1.15)

J ) J )
BO =Y B =3 =,

j=1 j=1

since E(z;) = ¢ and K; + ...+ K; = K. For 7 we must utilize that 3? is the ordinary empirical
variance so that

E(s2lw) = 0*(w),
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By the rule of double expectation
E(s}) = BE{E(s]|w)} = E{o*(w)} = 77,
and by (1.15) right

J J
) K;—1 K;—1
E(T2)_§:K] JE(SQ)—XT N m? =12

j=1 Jj=1

Finally, to justify the estimate for 2 in (1.16) consider

J
K; 2

Qv = ij('ffj - C)Z

7j=1

Since
. T K.
C_C:Zf](‘fj_g)a
j=1

it follows that

J K .
Qu=3 L@ -0 (-0
=1
Moreover, we have from (1.22) middle that
- 2 o, T
E(:Cj — C) =v° + ?J
and that
J 2 2 2
~ ~ K. K T
()2 = — 7 ) — 2 2, 7y
B0 =0 = 32 () vante = X () 07+ )

It follows that
J 2 J 2
_ K; K; 2, T
B(Q) = X R0+ 1) > (%) g
or (since K1...+ K;=K)
J T IKN\?2 12
_ .2 2 2
E(Qy) =v + T Z(%) -
Thus

J N2 o
BQ)=1-3 () v+ T,

=1
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and the the estimate 02 is determined by solving the equation

J J 2
K, K, J—1
L T T
This yields
o T K /K= - )/K
1- %71 (K;/K)?

which is (1.16) for ©. The argument has also shown that © is unbiased.

1.8 Furter reading
1.9 Exertcises

Exercise 1
Consider in the credibility estimate the weight w as defined in (?7?).

a) Show that w is an increasing function of v. Explain why this had to be so.
b) What does the weight become when v = 0 and when v — 007 Interprete!

c) Show that w is a decreasing function of 7. There is a good good reason for that. What is
it?

d) What does the weight become when 7 = 0 and when 7 — 0o? Explain once again.

Exercise 2
Consider a policy holder with annual claim frequency

#= &y,
where y is gamma distributed with density function

a—1

g(y) = %y ~exp(—ya)

as in section 6.6. The client has been in the company for m years. The number of claims is Ny in
year k, k = 1,...,m. he problem addressed is what we can say about the future number of claims
N given Ni,..., N,,. Assumptions are the model above for y and Ny, ..., N, being conditionally
independent and conditionally Poisson distributed given u. Thus
n
Pr(Ny =n) = % exp(—u)-

Note that this is the same type of conditions as in section 8.4.
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a) Use Bayes’ formula (?77) to show that the conditional density function of y given n1,...,n,, is
of the form

const x y™"relexpl{—y(a+ mé)}
where
_ 1
n=—Mn1+...+np)
m
is the average number of claims per year in the past.

Introduce

o+ mé
Ya+mn

Tr =

b) Prove that the density function of z becomes

o(y) = %mﬂ—l exp(—f)

where
B =a+mn.

[Hint: Use exercise 2.7]

We have now established that

o= () =

where z given ni,...,n,, follows the gamma distribution above.

c) Use b) and a result in section 6.6 to conclude that N given n; ...n,, is neagtively binomial
distributed.

d) From (??) and (??) conclude that

a+m
E(N|n1,...,'nm)=€ §
o+ mn
and
a—+mé
N =(1
V&I‘( |’)’I,1, ’I’I,m) ( +7)§a+mﬂ’
Y= :
a+mé

Exercise 3
This is a continuation of the preceding exercise. If we follow the notation of section 8.4, the claim
frequency of the policy holder is pu(w) and its estimate from the past record is

— a+mé

plw) =§

o+ mi’
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a) When is the estimate above and below the portfolio mean £? Explain!

b) Show that

E{p(w) — p(w)} =0

—_

so that p(w) is unbiased.

c) Use the preceding exercise to deduce that

war{u(o) - @)} = i) (14 5.

—

This result suggests that the estimate p(w) is unlikely to very accurate.

d) Why is that? [Hint: Ignore the last term in the expression for va,r{,u/(;) and examine the
relative eroor.]

Explanatory variables could be the location of a house with respect to floods, storms or earth-
quackes or descriptions of individuals in terms of sex, age, claim record and other things. The
case used for illustration is a simplified one from motor insurance where premium is broken down
on age (2 categories), distance limit on policy (6 categories) and geographical region (also
6 categories). There are then 2 x 6 x 6 = 72 different groups. Why can’t simply straightforward
estimation techniques be applied 72 times, once to each group? What typically happens is il-
lustrated by the following estimates, obtained by applying the elementary estimate (??) to the
youngest age group of the most densely populated region:

Distance limit on policy (10000 km,) 8 12 16 20 25-30 No limit
Estimatd annual claim intensity (%) 4.5 30.4 18.7 16.5 7.3 91.3

These estimates do not make sense! Random error is enormous despite the portfolio having
100000 policies (exposure two years on average). But they are very unevenly divided among the
72 groups and the smaller ones too thin to return reliable results. What regression techniges do
is to present smoother (and without doubt truer) pictures of the reality.
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