1 Introduction

1.1 A view on the evaluation of risk

The role of mathematics

What skills should the modern actuary possess? Is this influenced by the powerful modern
computers? The present book takes the view that an actuary is first and foremost a prac-
titioner who is there to solve practical problems in insurance and finance. Mathematics is
an essential part and actually plays two different roles. One is as vendor of models which
provide simplified descriptions of the complicated world of risk in insurance and finance.
These models are usually stochastic. They might in general insurance come as probability
distributions for claim frequency and claim size, in life-or disability insurance the central
quantities might be Markov processes based on mortalities or intensities of passing from an
active state to an disabled one. There are countless other examples.

Mathematics can from this point of view be seen as a language to express statements
of risk in, and it is a language the actuaries must master. Otherwise they will not be able
to to understand how their risk models relate to the reality, what their conclusions mean
and neither will they be effective in presenting their analyzes to clients. Actuarial science is
in this sense almost untouched by the modern computational facilities. The basic concepts
and models remain what they were, notwithstanding, of course, the strong growth of risk
products throughout the last decades. This development may have had something to do
with computers, but not much with computing per se.

But mathematics is also deductions. Through mathematics we derive statements from
assumptions, utilizing the rules of logic. At school and at introductory courses at university
this is the way mathematics usually is taught. It is here computing enter applied mathemat-
ical disciplines like actuarial science. More and more of these deductions are implemented
in computers and carried out there. This has been going on for several decades, and it has
during that time been an enormous growth in computing power, seemingly with no end.
The impact of this technological development is that we may employ simpler and more
general computational methods which require less of users.

Risk methodology

The supreme example of such an all-purpose computational technique is stochastic simula-
tion, which reproduces in the computer simplified versions of the risk processes that take
place in the market place. We shall throughout the book denote risk by letters such as
X and Y. They are future payments or payment streams with uncertainty attached. In
general insurance they come as compensations for claims or sum of claims. With pensions
they are agreed payments interrupted (say) in case of death. Financial risk deals with the
future value of assets such as shares and bonds and also with derived products where the
pay-off are modified from that of the underlying asset through certain contract clauses.
Such secondary products exist in insurance too. Re-insurance is the central example.

The mathematical approach, today unanimously accepted, is through probabilities. Risks
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Figure 1.1 The working process: Steps when evaluating a risk X.

X and Y are then regarded as random variables. Eventually (after the event) we shall know
what they have become. However, for planning and control and to price risk-taking activi-
ties they are needed in advance. We must then fall back on their probability distributions.
The working process is depicted in Figure 1.1. On the left is the real world, an enormously
complicated mechanism (denoted M) that will eventually produce a future X. We shall
never know M, though our paradigm is that it exists as a mathematical model. What we do
instead is to build a simplified version M and use it to draw conclusions. These deductions
rarely purport to say what X is going to be. The aim may be the expected value (often
quoted as the value today) or how low X can reasonable fall under unlucky circumstances
(which is used for control). Even those projections will be wrong if the model M deviates
too strongly from M. That issue is a very serious one indeed, and Chapter 6 provides an
introduction.

What there is to go on when M is put up is listed on the right in Figure 1.1. Learn-
ing from the past is an obvious source (but not all of it is relevant). In finance there is
information in the current asset prices which harbour a market view on future development.
This so-called implied view is discussed in Section 1.4 (and Chapter 12). Then there is the
so-called theory of arbitrage where the evaluation of derived products in finance partially
rests on the assumption that risk-less financial income is impossible. This innocent looking
no-arbitrage condition has wide implications; see Chapter 13. Personal judgment in parts
of all this is unavoidable, but it isn’t easy to be specific, and neither shall we go into the
physical modelling used (for example) by the big re-insurance firms where simulation mod-
els try to imitate actual physical damages in the computer!. This book is about how M is
constructed from the three other sources, how it is implemented in the computer and how
the computer model is used to infer the probability distribution of X.

The computer model

The real risk variable X will only occur once. The economic result of an financial investment
in a particular year is an unique event. The same is the aggregated claim against an insur-
ance portfolio during a certain period of time. That is what is different with the computer
model. We can play it as many times as we please once we have set it up. Suppose it is used
m times to produce m different realizations X7,... X, of X. Clearly we may from this set
of simulated or sampled values read off which values of X are the likely ones and how bad
the situation might be if we are unlucky. The *-marking will be used throughout to distin-

!'Examples are hurricanes ravaging the South-Eastern part of the United States at irregular
intervals or earthquakes in vulnerable zones of this planet. Through extensive (and costly) computer
simulations of such events, analysts hope to gain insight into their cost.



guish computer simulations from real variables and m will denote the number of simulations.

The method portrayed on the left in Figure 1.1 is known as the Monte Carlo method.
It will interchangeably be referred to as a method of sampling or as stochastic simulation.
Whatever name used it belongs to the class of techniques for numerical integration, and it
has as such a long history; see Evans and Schwarz (2000) for a summary of this important
branch of numerical mathematics. Monte Carlo integration is computationally slow, but
other numerical methods (that might do the job faster) often require more expertise to use,
and they have the weakness that they bog down for high-dimensional integrals, which are
precisely what we often encounter when evaluating risk. The Monte Carlo method is unique
in tackling well the numerical integration of many variables.

Monte Carlo: General points

What is the significance of numerical speed anyway? Does it really matter that some spe-
cialized technique (demanding more time and know-how to implement) is (say) one hundred
times faster as long as the one we use still only takes a second? Of course, if the procedure
for some reason is to be repeated in a loop thousands of times, it would matter. However,
the slow simulation techniques are in a huge number of situations quite enough, and, in-
deed, the practical limit to their use is moving steadily as computers become more and
more powerful. How far have we got? The personal computer on the author’s desk (not
particularly advanced) could produce (2004) around 3 million drawings from the Pareto
distribution per second (using Algorithm 2.6, implemented in old-fashioned Fortran) and
a similar number from the normal (Algorithm 2.2). That is 1000 claims in an insurance
portfolio simulated 10000 times (i.e. 10 million draws) completed in about three seconds!

One of the aims of this book is to demonstrate how these opportunities are utilized; i.e.
how simulations programs are designed, how they are modified to deal with related (but
different) problems and how different programs are merged to handle complex situations
where risk is the product of several contributing factors. The versatility and usefulness of
the Monte Carlo tool is indicated in Section 1.5 below (and in Chapter 3). By mastering
it you may free yourself from what has been preprogrammed in large (and often expensive)
software packages. Implementation may not take long if you know the ropes.

What remains is the programming platform to use. This book takes no stand there. All
algorithms are written in the pseudo-code of Algorithm 1.1 below. Excell and Visual Basic
are a standard in the insurance industry and has become feasible even with simulation.
Much higher speed is obtained with C, Pascal or Fortran, and in the opinion of this author
people are well adviced to learn simple programming software like those. There are other
possibilities, as well. Much can usually be achieved with a platform you know!

1.2 Insurance risk: Basic concepts

Insurance and ceding
General insurance is reimbursements of accidental damages or injuries. Behind this is the
notion of ceding, i.e. that risk is transferred from one party to another. A typical case is a



house owner guarding against destruction by a fire or some natural catastrophe, such as an
earthquake or a flood. If an unfortunate event of this kind occurs, compensation is received
from a company. The amount X payed during some budget period (typically a year) is
either X = 0, if no incident is reported or some sum given by the extent of the damage and
the contract (known as a policy). More than one accident is possible.

The ceding of risk is not limited to client and company. It also takes place (and on a
routine basis too) between companies. This is known as re-insurance. The rationale could
be the same; i.e. a a financially weaker agent transferring risk to a stronger one, but in
reality even the largest of companies do this to spread risk. Financially the cedent may
be as strong as the other party. Re-insurance is different from ordinary insurance in that
the risk originates futher back in a chain of ceding. In mathematical terms we express it
through

X = H(X) (1.1)

where H is some function defined by the re-insurance contract; for specific examples, see
Section 3.2. Clearly X*™ < X; i.e. the responsibility of the re-insurer is always less than
the original claim. The rest X — X stays with the ceding company.

In practice risk can be ceded several times in complicated networks extended around the
globe. This is a tool used by managers to tune their portfolios to a desired risk profile. The
contractual obligations define functions such as H(z) in (1.1). Modern actuarial science
provides us with means to analyze the risk taken by an agent far removed through inter-
mediaries from the primary source.

Life insurance and pension schemes are handled by the same approach; only the interpreta-
tion of X changes. Term insurance where a one-time sum is received by the beneficiary of
the insured upon the death of the latter, resembles property insurance in that a rare event
leads to payment. Pension schemes are the opposite. Now compensation may cease if the
insured dies. The fact that the likelihood of no payment (X = 0) now is small makes no
difference for the method which remains the same. One of the strong points of mathematics
is that many different situations are treated by the same methodology.

The pricing of risk

Of course, transfer of risk, as captured by some random variable X, does not take place
for free. The price charged by the insurer or re-insurer (usually in advance) depends, as
always, on market conditions, but there is a guideline in the expectation of X, denoted

= E(X), (1.2)

known as the pure premium. If it is charged, a company, in the absence of all overhead
cost and expenses and all financial income, is in a break-even situation in that it will neither
earn nor lose money in the long run; see Appendix 7.



In practice, such pricing is rare, and a company adds a so-called loading 7y by demanding
in the market the premium (or price)

7 = (14 7)m, (1.3)

so that it actually charges an amount ym above the break-even situation. We may regard
v as the cost of risk. In the mathematical notation the distinction between 7 and 7™
will rarely be made visible. Attempts have been made in actuarial literature to determine
v from theoretical considerations; see 77 and ?77. This approach is rarely used in practice,
and will not be further considered in this book.

A more important question is whether the pure premium actually is known. Where does it
come from? In practice mathematical models is used to describe risk. Some simple ones will
be employed in Part I and a more systematic study of them will be given in Parts IT and TI1.
These arguments always leave unknown parameters, typically determined from experience
through statistical estimation or assessed more informally if hard historical data are lacking.
Whatever track followed it is an important distinction between the true 7 characterizing
an insurance treaty and the one 7 used for analysis and decisions. The issue of error in
input quantities is a fundamental one; see also Figure 1.1. Tt applies to all situations and
models examined in this book, and we have special notation for it. A"~ over a parameter (or
quantity) such as zﬁ means an estimate or assessment of the underlying, unknown . We
adhere to this convention throughout. Errors and how we deal with and confront them is
taken up in chapter 6.

Portfolios and solvency

The other major issue of insurance risk is control. Financial regulators in all countries re-
quire insurance companies to set aside enough money to cover their obligations toward the
customers. Indeed, this is a major theme in the legal definition of insurance. To formulate
this mathematically we must introduce the concept of portfolio. An insurance company
has taken responsibility for many polices. In fact, this was the whole idea in the first place,
The company will lose on some (in property insurance those causing damages) and gain on
others. With pension schemes the long lives lead to losses (for the company), the short ones
to gains. On the portfolio level gains and losses average out. This is the beauty of the idea
of a large agent handling many risks simultaneously.

Suppose the portfolio consists of J policies with risk variables X1,..., X . Then
J
X=>YX; (1.4)
j=1

is the portfolio risk. We shall throughout the book consistently use caligraphical letters like
X for quantities applying to portfolios. In (1.4) X has an expected value that is the sum
of all E(X;). However, with portfolios we are equally often concerned with how far up it
fluctuates under unlucky circumstances. In fact, the regulatory offices demand that enough
money is reserved to cover X with very high probability, for example 99% (the percentage
vary with the country). In mathematical terms this amounts to solving the equation

Pr(X >qc) = e (1.5)



for the so-called percentile gc. Here € is a small number (for example 1%) and Pr is the
probability. The amount ¢. set aside to be sufficient to reimburse every claim beyond
reasonable doubt is called the solvency capital or the reserve. A name used for such
quanities in finance is Value at Risk (VaR for short). As elsewhere there is the problem
that it will be a discrepancy (sometimes considerable) between the theoretical g. we seek
and the estimated one g, we actually use.

1.3 Financial risk: Basic concepts

Introduction

An ordinary bank deposit vy grows to (1 + r)vg at the end of one period and to (1 + 7)%ug
after K periods. Here r, the rate of interest, depends on the length of the time interval.
For example, interest compounded over K segments, each of length 1/K leads to

r
1+ ?)Kvo — e"vy, as K — oo,

after one of the most famous limits in mathematics. It follows that interest earnings may

be cited as

TV or (e" = 1)vg

depending on how often the “interest on interest” is calculated. The latter leads to nicer
formulas with financial derivatives, and will be used there. Of course the two forms are
equivalent. We may always raise r slightly to make rv equal to the continously compounded
earning.

The purpose of this and the next section is to review extensions (in many directions) of
this risk-free rate of interest. Gone are the days where actuaries handled liabilities insu-
lated from assets and the companies carried all financial risk themselves. Today there is
a growing trend of ceding it back to customers. Indeed, insurance products with financial
risk integrated have been sold for decades in countries like Britain and the US under names
such as unit link or universal life. The rationale is that clients receive higher financial
income in expectation in exchange for carrying more risk. Pension plans are today increas-
ingly contributed benfits (or CB) where financial risk rests with the individual members
rather than defined benfits (or DB) where they took none. There is also much interest in
using investment strategies taylored to the nature of the liabilities, in particular how they
distribute over time. That is known as asset liability management (or ALM for short),
and is discussed in Chapter 13.

What flows from all this is the modern actuary being required to analyse risks of different
origin. This is all the more natural to cover in a single book as the basic mathematical,
statistical and computational techniques are very much the same so that the user fairly
easily can carry them from one area to another. Financial risk is more important in life and
pension insurance (which last for decades), but it does enter property insurance too.

Financial returns



Let V, be the value of a financial asset at the start of a period and V; the value at the end
of it. Then

i—W
R = 1.6
T (1.6)
is called the return of the asset. Solving the equation for V; yields
Vi =(1+R)V, (1.7)

which shows that RVj is financial income and that R acts like interest. But it is more than
that. Interest is a fixed benefit offered by a bank (or a salesman of a very secure bond) in
return for making a deposit and is risk-free. Shares of company stock, on the other hand,
are fraught with risk. They may go up (R positive) or down (R negative). When dealing
with such assets, V] (and hence R) is determined by the market whereas with ordinary
interest r is given and V; follows.

The return R is a more general concept than ordinary interest r and is assumed to be
random variable following a probability distribution. If random variation is taken away, we
are back to a fixed interest r. As r depends on the period of time between V) and V7, so
does the distribution of R; how will appear many times in this book. Returns are harder
to analyze and work with than interest. The latter follows from the agreement with the
bank, whereas the former is unpredicable and can only be described through probability
distributions.

Whether interest r really is risk-free may not be so obvious as it seems. True, you do
get a fixed share of your deposit as reward at the end of each term, but that does not tell
its worth in real terms. If there is long time horizon, inflation may reduce the value of your
contract severely. Indeed, for bonds with long time to maturity the inflationary risk may
be considerable. Then there is opportunity cost of having entered an agreement at fixed
interest when the market spot rate after a while overturns what you get. We discuss and
integrate these issues with other sources of risk in Part III of this book.

Log-returns
Economics and finance often construct stochastic models in terms of R directly. An alter-
native is the log-return

L =1log(1+ R), (1.8)
which by (1.6) can be written as
L = log(V1) — log(Vp)

as the difference between values on logarithmic scale. The modern theory of financial
derivatives, outlined in chapter 13, is based on L. Actually L and R may not be so different
since

R?> R?

L=R+—+—"—+...
+ b



which is the so-called Taylor series of log(1 + R). But R is a rather small quantity and
higher powers of R thus become very much smaller than R itself. It follows L deviates little
from R over short periods. This will be substantiated in Section 2.3 through a less heuristic
argument. When the time horizon is longer, the discrepancy may be larger.

Financial portfolios

In practice investments are often spread on many assets, defining baskets or financial port-
folios. By intuition this must reduce risk; see Chapter 5 where the issue is discussed.. A
central quantity is the portfolio return, denoted R (in caligrahical style). Its relationship
to the individual returns R; of the assets is as follows. Let

J
Vo=>_ Vjo
j=1
be the portfolio value at time zero. Here Vig,...,Vjo are investments in the J assets. At

the end of the period the value of the portfolio has grown to

J

Vi = (1+R;)Vjo.
j=1

Subtract Vy from V; and divide on V. This yields portfolio return equalling

J VE)]
j=1 0

Here wj; is the initial financial weight on asset j. Note that
wy+...+wy=1. (1.10)

Financial weights define portfolio shares of individual assets and will in this book always
satisfy this normalising condition.

The mathematics allow negative w;. Actually this is a practical proposition, since with
bank deposits it corresponds to borrowing. With shares it is called short selling and is a
possibility with liquid stocks; i.e. those that are traded regularly in the market (as is the
case for most well-known public companies). The loss in a negative development is then
carried by somebody else. The mechanism is as follows. Our contract with a buyer is to sell
shares at the end of the period at an agreed price. At that point we shall have to buy at
market price, gaining if the market price is lower than our agreement, losing if not. Short
contracts may be an instrument to lower risk; see Chapter 5.

1.4 Risk over time

Introduction
Financial variables are often followed over many periods. When adopting this view, interest
rates, returns and values of financial portfolios will be written {ry}, {Rr} and {V}}, using &k



to represent time. Sometimes other variables, such as liabiltities { X} will be time-indexed
too. The corresponding points in time ¢; are always equally spaced; i.e.

ty=kh, k=0,1,...,K (1.11)
starting at g = 0 The terminal point is
T = Kh. (1.12)

The magnitude of h and T varies enormously with the situation. Life and pension insurance
are often concerned with decades. It is then typically sufficient to let h be one year. On
the other hand the pricing of financial derivates (Chapter 13) takes h is infitisemally short;
i.e. we let h — 0! Continuous time will be used on other occasions too.

Investment strategies
Insurance companies and pension schemes are often concerned with financial risk many
periods ahead. If Ry is portfolio return in period k, the account evolves according to

Ve=(1+R)Vee1, k=1,2,..., (1.13)

where the link of Ry to the individual assets is through (1.9) as before. In obvious notation
we now write

J
Rk = ijRlcj- (1.14)
j=1
An important point is that the weights wi,...,w; do not stay the same from one period

to another. Individual investments develop differently, changing their relative contribution
to the portfolio. When weights above have been written without any reference to the time
index, it signifies a specific strategy known as rebalancing. This means that the portfolio
is carefully monitored to keep weights fixed. To do it assets that have fared poorly are
bought and the successful ones are sold.

An alternative line of investing is to allow weights to float freely. That strategy is more
conveniently expressed mathematically through

J
Vi = ZV’CJ" where Vij =1+ Rpj)Vi—rj, J=1,...,J.
j=1
Now individual assets are followed and added to the portfolio value. We would simulate the

two strategies in slightly different ways, but the stochastic modelling is in terms of returns,
as before, see Section 2.4.

Forward interest rates and returns
We often deal with interest rates accumulated over several periods. Consider a bank account
vg at tg = 0. At tx = kh it has grown to

(1 + Tk)(l + ’f‘kfl) s (1 + 7"1)%



and the interest rate over the entire period, denoted r¢.; is
l+roe=0+r)L+re)--- (14 7g). (1.15)
If r, = r is constant, then
14 rgp = (1+7)%.

More general notation is sometimes useful, for example r;., for the forward interest rate
from t; to tx. In this language ry = rg_1.k, reminding us that r (and Ry) always apply
to the preceding period. Similar symbols will be used of returns, for example Ry.; for the
period from ty to g

These quantities can’t fluctuate freely with respect to each other. That issue will be dis-
cussed in Chapter 12. Another point is the following. We do not know what future interest
rates are going to be, but our belief on that is crucial for what we are willing to pay for
financial instruments like bonds; see below. Such assets are traded regularly, and the po-
sitions taken reveal a market view on interests. In that sense the forward rates r(.;, become
available for all k. They will be denoted 7., to distinguish them from 7rg.;, the rate that
actually appears (which may be very different). The average rate . per time step is known
as the yield and is defined by

1+ 7o = (1 + Jou)" or o = (1 + 7o)/ — 1. (1.16)

We are often interested in the entire sequence {7g.;} as k is varied. This is known as i the
yield curve?. There is a growing trend in contemporary finance for using these implied
rates for valuation. That brings us to the next issue.

Present values

What is the value to-day of receiving some payment Y7 at time ¢; if the interest rate is r7
Surely it must be Y7 /(1 + r) since that would grow to exactly Y7 at the end of the period.
More generally Y}, at tj is worth Y} /(1 4 ) to-day. This motivates the present value

Ky,
PV = —_— (1.17)
kzz% (1+7)k
as a summary of the value of a payment stream Yy, ..., Yx. This criterion is very popular
as evaluation criterion in all spheres of economic life. In our applications Yp,...,Yx are

often described by stochastic models, which means that the present value is stochastic too.
Payments could be both positive and negative.

The factor 147 is known as the discount factor in that it devaluates or discounts future in-
come to its value if possessed today. With financial derivatives we shall use the continuously
compounded version exp(r) instead. In life insurance r is called the technical interest
rate, and here we have the weak spot of present values. What technical rate should be

2If there are gaps at certain time points due to lack of trading, we might invoke numerical
interpolation to fill them in.
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used? In insurance it is needed for evaluation decades ahead. Not easy to know interest
rates of such time spans! These considerations have motivated the alternative approach of
using the market view instead. The present value then becomes

PV = i Yi (1.18)
=0 1+ fo

where the discount now orginates with the interest rate curve. There is much interest,
academic and otherwise, in this approach.

Bonds and yields

One of the most common ways of raising capital for governments and private companies is
through bonds. In return for money received up-front the issuer makes fized coupon pay-
ments at pre-determined time points ¢y, k = 1,2,... K, usually with a big amount (known
as the face of the bond) at expiry at tx. The coupon payments can be regarded as interest
on a loan, but this interpretation is of no significance mathematically. From that point of
view bonds are fixed payments at fixed dates. How long they last varies enormously, from
a year or less to up to half a century! There is a huge second-hand market for them, and
they are traded regularly.

It may seem obvious to value a bond through the present value (1.17), but actually it
is the other way a round. The present value is given by what the market is willing to pay,
and the rate of interest determined by the resulting equation. Thus if Py.x is the price
traded for the right to the payment stream {Ay}, its yield ¢ is the solution of

Po.x = ;;)w (1.19)

With more than one payment a numerical method is needed.

A special case of importance is the zero-coupon bond or T-bond for which
Ag=...Ag 1 =0.

The only payment takes place at the maturity tx of the asset, and in a market operating
rationally the zero-coupon bond yield must coincide with yield calculated from the forward
rate of interest 7p.x in (1.16). Bond trading reveals a market the view on future interest
(and inflation too). Actually that is how the forward rate is determined but the issue is
complicated since there are so many different types. This is dealt with in Part III. To see
how the yield curve go.x may look like in practice; consult the model calculations in Figure
6.3 left.

Duration

It is common to measure longevity of bonds and other fixed payment streams through their
duration. There are in the financial literature several versions . A simple one, based on a
fixed technical rate of interest r, is

. Yk(l-l-T)*k
S Yi(l )t

K
D= Z it where qr (1.20)
k=0
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Formally the sequence {g} is a probability distribution, and duration D expresses how long
the cash flow {Y}} lasts “on average”. The interpretaion stems from the “probabiltities” gy
being propertional to the present value of the payment Y.

For a zero-coupon bond maturing at T' = tx = Kh, we have
gk =1 and g, =0, for k < K.

so that D = T, as sensible measure. A bond with fixed coupon payments have duration
somewhere between 7'/2 and 7. Duration is also a useful concept with liabilities in life
insurance; see Chapter 12.

1.5 Examples using Monte Carlo

Introduction

Concepts of risk have been introduced, but no models describing them. This section provides
illustrations through very simple means. It is also the intent is indicate how the Monte
Carlo method is put to use and its potential power for problem solving, communication and
learning. Our tool is the following simple recursion which unifies a number of examples
from a computational point of view. For k = 1,2,... consider

Y, =aYy 1+ X, k=1,2..., Yo = yo, (121)

where a is a parameter. The sequence {Xj} are stochastic variables that 'drive’ the other
sequence {Y;}. The only thing we assume about {Xy} is stochastic independence. This
means loosely that random factors and events influencing { Xy} in period k bear no rela-
tionship to those affecting the sequence in other periods. One possibility for the parameter
a is to take a = 1+ r, where r is the rate of interest. The recursion then defines the status
of an account influenced by random events.

A more advanced specification is
ap =14+ Ry, and X = —X.

Here a = aj, represents financial return, possibly from a large and complicated portfolio
whereas X, are insurance claims that go out of the account. Now {Y}} keeps track on both
asset and liability risk. Simulation require one procedure for Ry and one for X}, integrated
through Algorithm 1.1 below. Examples of this nature will be discussed in Chapter 13.

A skeleton algorithm
The simulation of {Y}} is carried out by the following skeleton scheme, which introduces
the first algorithm of the book:

Algorithm 1.1 Basic recursion
0 Input: yo, a.
1YS <y % Initialisation
%Draw K here if random

12



2Fork=1,...,K do
3 Sample X} % Many possibilities
4 Y < aYy_1 + X % New value

5. Return Y{f,... Yz (or just Yz)

We start by initializing (step 1), and then successively draws the random terms X; (step
3) that revise the previous values Y;* ;. Note that all sampled variables are *-marked. The
backward arrow < signifies that the variable on the left is assigned the value on the right.
It is a more convenient notation than an ordinary equality sign, as will emerge later3. The
% symbol will be used throughout the book to insert comments. Actually most simulation
experiments in insurance and finance fit this scheme or some simple variation of it.

The recursion (1.21), implemented through Algorithm 1.1, unites many of the basic models
in insurance and finance. Here are four examples.

Insurance portfolios

Consider a portfolio of J insurance policies and suppose the sum of all compensations to
customers is to be evaluated for the following year, uncertainty included. One approach is
to draw all X; randomly and add them together. That is exactly what is achieved in Algo-
rithm 1.1 ifa = 1 and yo = 0, provided, of course, that liabilities are generated appropriately.

The example shown in Figure 1.2 is for so-called term insurance, where there is a one-time
payment to a beneficiary upon the death of the policy holder. Imagine that the insured
sums (; are stored on file. We would also have access to age and sex of the policy holders,
from which their probability 1p; of surviving the coming year can be inferred; see Section
3.4 for details. Note the notation 1p; which is indigeneously actuarial; we’ll meet more of
that in Chapter 10. It follows that the liability model is

PI‘(Xj =0) = 1Pjs Pr(Xj = Cj) =1-1pj,

and it is a simple matter to go through the portfolio, read policy information from file, draw
randomly those who die (whom we have to pay for) and add all payments together.

The example in Figure 1.2 were run with 10000 policies for which the sum insured was
one million US$ for each. Survival probabilities and the age distribution of the policy
holdes were as specified in Section 3.4. The insured were between 30 and 60 years. One
hundred parallel runs through the portfolio are plotted jointly on the left showing how the
simulations develop. The curved shape has no significance. It is due to the age of the policy
holders having been ordered on the file so that the young ones with low death rates are
tested first.

3For example, if we only want the last value Y7, as is frequent, we may write statements like
Y* « aY* + X* overwriting Y*; past values mnot being stored in the computer. Many of the
algorithms in the book will be presented in this way.
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Figure 1.2 Simulations of term insuarnce. Left: 100 parallel runs through insurance portfo-
lio. Right: Annual density function.

What counts is the variation between (say) 70 and 100 million US $ after having gone
through the entire portfolio. On the right of Figure 1.2 this variation is converted into
an estimated probability density function. For that 10000 simulations were used (and the
so-called kernel density estimator explained in Section 2.2). The Gaussian looking shape
follows from the central limit theorem®. In life insurance this kind of risk is often ignored.
You will see why in Section 3.4.

Insurance portfolios of identical risks

A common model in property insurance (not the least in textbooks) is that of identical
risks. Claims then appear on average equally often for all policies, and there is no system-
atic variation in their cost. The portfolio then has to cover

X=Zi+...4+ 2y

where 71, Z,, ... are the payments and N their number. We no longer have to keep track
on which policy a claim come from since the probability distribution is the same anyway.
There will be more on this representation in Section 3.2.

Simulation algorithms have much in common with the preceding example. The prin-
cipal difference is that claim frequency N'* must generated before entering the for-loop in
Algorithm 1.1 (as indicated there). Subsequently N* damages are drawn and added. De-
tails are recorded as Algorithm 3.1 in Chapter 3.

The example in Figure 1.3 was run with annual claim frequency 1% per policy, assum-
ing the standard Poisson model (Section 2.6 and Chapter 7). Claim size was taken from the
so-called Danish fire data (Section 8.2). This is an historical material comprising over 2000

4You need the Lindeberg extension of this celebrated result; see ??.
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Figure 1.3 Density functions of the total claim against portfolio of fire risks (eight Danish
kroner (DKR) is about one euro).

fires, the largest one going up to several hundred million Danish kroner (DKR)3. All those
on record was considered equally likely to re-appear in the future, an approach discussed in
Section 8.2. Evaluations of the probability distribution of portfolio payments are shown in
in Figure 1.3 for a “small” portfolio (J = 1000) on the left and a “large” one (J = 100000)
on the right. The density estimates were in both cases calculated from 10000 simulations.
Random variation is more important than in the preceding example. For the small portfolio
the density is skewed to the right, which implies a substantial likelihood of very much larger
losses. If you consult Figure 8.1, you will discover the same shape in the Danish fire data.
As portfolio size grows, the asymmetry is straightened out and the distribution becomes
Gaussian, as predicted by the central limit theorem

Reversion to mean

Simulation is also useful to understand (with minimal mathematics) the behaviour of
stochastic models for financial variables. Consider first quantities like interest rate, volatil-
ity, rate of inflation and exchange rates. All those tend to fluctuate between certain, not
clearly defined limits. If they swing to far out on either side, there are forces in the econ-
omy that tend to drag them back again. This is known as reversion to mean and plays an
important role in the mathematical description of all the quantities mentioned.

Consider interest rates. The most widely used model in finance is due to Vasiéek (1977)
and bears his name. Elsewhere it is usually called first order autoregressive and is then
written

e =Yp+§
Y, = aYy_1 + ocy, Yo =19 —¢&. (1.22)

5There is about eight DKR in one euro.
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Figure 1.4 Simulations of the annual rate of interest from the Vasicek model.

Here ¢, a and o are fixed parameters, and {¢;} consist of independent terms, all having the
same probability distribution with mean 0 and standard deviation 16. The series {Y}} are
simulated by Algorithm 1.1 and € is added to produce {rx}. In Figure 1.4 all random terms
are Gaussian.

Simulation experiments were run under two different model scenarios of annual parame-
ters:

Rapid change: 70=3% &(=7% a=0.70 o =0.016
Slow change: 10=3% &(=7% a=0.95 o =0.007

Annual parameters

In either case is the value in the beginning (at 3%) much lower than the long-term average
(7%) around which the interest rate eventually fluctuates. That level is quickly reached in
the first model scenario (Figure 1.4 left), and there is from then on no systematic change in
the oscillations. Such phenomena are called stationary, and they are discussed in Chapter
12. Even the second model scenario would eventually produce such behaviour, but it takes
much longer time (because a is close to one). After 30 years the movements is still slightly
on the rise on average. Values of a approaching one from below produce smoother, less
volatile developments. When a = 1 the character of the model changes completely. That is
dealt with next.

Perfect markets: Equity

Stock prices {Sk} are not mean reverting. Why not? Because unlike interest and inflation,
they are traded commodities. If we knew of a systematic factor tending to drive them up
or down, we would be able to act upon it and earn money. But that opportunity would be

6That convention is followed throughout. Series denoted {e;} always satisfy these conditions.
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available to everybody, making the idea useless. Another way to put it is that the market
would allow arbitrage, i.e. risk-less financial income. This notion, underlying the pricing of
modern financial derivatives, will be introduced in chapter 13.

The standard model for equity returns is
Ry =exp((+oeg)—1, k=1,2.... (1.23)

Here ¢ (as above) is a sequence of independent random variables with mean zero and
standard deviation one. By definition the value of the stock then evolve according to

Sk = (1+ Rg)Sk-1,
which after inserting for Rj becomes
Sk = exp(& + oeg)Sk—1 k=1,2..., So = so, (1.24)

which might be called a geometric random walk. On logarithmic scale Yy, = log(Sy) we
have an ordinary random walk; see (1.25) below. In continuous time as b — 0 the model is
in mathematical finance called geometric Brownian motion.

The model is simulated in Figure 1.5, but in the form of the financial returns Ry.; rather
than the share price directly. The intial value so then drops out, and we are lead to the
scheme

RO:k = exp(Yk) -1
Yo=Y, 1+E+oeg, K=1,2,... Yo=0 (1.25)

Simulation is again a tiny variation of Algorithm 1.1.

The parameters chosen were on monthly time scale:

Low yield and risk: & =0.4% o =4%
High yield and risk: ¢ =0.8% o=8%
Monthly parameters

These specifications could be representative for single equities. What emerges in Figure
1.5 is a behaviour entirely different from that of interest rates. Mathematically that is due
to the the coefficient ¢ which was 0.7 and 0.95 in Figure 1.4 and 1 now. The crucial detail
is whether a is less then one or equal to one (more in Chapter 12). There is in Figure 1.5
strong potential for huge gain and also for huge loss. Up to 50% of the orginal capital is lost
in a few of the simulations on the right! Be aware that scales on the vertical axes are not
the same. In reality the first model scenario returns a spread than is (perhaps) one third
of the other. Risk reduction seems called for. One possibility is portfolios of different stock.
The effect of that will be examined in Chapter 3.
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Figure 1.5 Simulations of accumulated equity return from geometric random walk (monthly
scale).

1.6 Outline of the book

The first part of the book is an introduction to the basic tools of quantitative risk analysis.
An elementary course in probability and statistics is taken for granted (although a brief
appendix is included), but such courses rarely move very far into the notion of dependence
between stochastic variables. That issue is the key to most interesting risk modelling. An
introduction is given in Chapter 5. Another issue which should be part of our basic think-
ing, is error. Models underlying statements of risk are often grossly inaccurate. That we
must live with, but we should at least understand what it implies. One consequence is that
simulation uncertainty often is minor and completely over-shaddowed by contributions from
other sources. Chapter 6 is an introduction to error in risk analysis.

But Part I of this book is above all on the Monte Carlo method and how its potential
is exploited. That is a question of techniques (Chapters 2 and 4), but also of a line of
thinking. For much problem solving we do not need complicated probabilistic descriptions
of the stochastic models involved. All that is necessary is how they are simulated in the
computer! Such an approach requires much less of mathematical prerequisites, and we shall
be able to get quicker to more “advanced” material. Chapter 3 will demonstrate how a
wide range of problems, coming from all areas of actuarial and financial risk, is solvable by
writing small (and simple) simulation procedures. Part of the skill (and a rewarding way
to work) is efficient use of the computer, notably the merging of computer programs with
others to handle increasingly more complex situations and reuse with adjustments to deal
with related, but different problems.

The two other parts of the book are more systematics treatments of risk topics, using
the machinery from Part I as a tool and with more on the probabilistic side of modelling.
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General insurance is considered in Part II, but without investment which have a more natu-
ral home with all the other methods that draw on stochastic processes. That is the subject
of Part III which deals with life insurance and financial risk. There is a Chapter on financial
derivatives and arbitrage pricing which do not rely on stochastic calculus.

1.7 Further reading
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