
1 Modelling II: Conditional and non-linear

1.1 Introduction

Insurance risk requires modelling tools different from those of the preceding chapter. Pension
insurance makes use of life cycle descriptions of individuals. They start as ‘active’ (paying con-
tributions), at one point they ‘retire’ (drawing benefits) or become ‘disable’ (benefits again) and
all along they may die. Insurance companies and pension schemes must keep track on and plan
for such things since their cash flow is influenced. Stochastic models are needed, but those can not
possibly be constructed by means of linear relationships like in the preceding chapter. There are
no numerical variables to connect! Instead we link distributions.

The central concept is conditional probabilities, expressing mathematically that what has oc-
curred is going to influence (but not determine) what comes next. That idea is the principal topic
of the chapter. As elsewhere, mathematical aspects (here going rather deep) are downplayed. Our
target is the conditional viewpoint as a modelling tool. Sequences of states in life cycles involve
time series (but of kind different from those in Chapter 5) and are treated in Section 6.6. Actu-
ally time is often not involved at all. Risk hetereogenity in property insurance is a typical (and
important) example. Consider a car owner. What he encounters daily in the traffic is thoroughly
influenced by randomness, but so is (from a company point of view) his ability as a driver. These
are random uncertainties of entirely different origin and define a hierarchy. Driver comes first,
and conditional modelling is the natural way to connect them. The same viewpoint is crucial when
errors of different origin are examined in the next chapter. There are countless other examples.

Conditional arguments will hang over much of this chapter, and we embark on it in the next
section. Copulas is an additional tool. The idea behind is very different from conditioning and as
a popular approach of fairly recent origin. Yet copulas has without doubt to come to stay. Section
6.7 is an introduction.

1.2 Conditional modelling

Introduction
Conditional modelling is sequential modelling, first X and then Y given X. The purpose of this
section is to demonstrate the power in this line of thinking. It is the natural way to describe
countless stochastic phenomena, and simulation is easy. Simply

generate X∗ and then Y ∗ given X∗,

the second drawing being dependent on the outcome of the first.

It is assumed that you are familiar with conditional probabilities at an introductory level (if not,
there is a brief section in Appendix A). When an event A has occurred, the probability of another
one B changes from Pr(B) to

Pr(B|A) =
Pr(A ∩B)

Pr(A)
, (1.1)
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of obvious relevance in gambling where new information leads to new odds. In this book conditional
probabilities are above all modelling tools, used to express random relationships between random
variables. Note the mathematical notation. The condition is always placed to the right of a vertical
bar. For conditional densities and conditional expectatons this reads f(y|x) and E(Y |x) if X = x
is given.

Modelling can only be learnt by example, and the present section is a bunch of cases. We start
with bivariate normal models. These are important in themselves, and introduce the main concepts
nicely:

The conditional Gaussian
Bivariate normal models were in Chapter 2 defined through

X1 = ξ1 + σ1η1 and X2 = ξ2 + σ2(ρη1 +
√

1− ρ2 η2),

where η1 and η2 are independent and normal (0, 1). see (??). Suppose X1 = x1 is fixed. Then
η1 = (x1 − ξ1)/σ1, which when inserted for η1 in the representation for X2 leads to

X2 = ξ2 + σ2(ρ
x1 − ξ1

σ1
+
√

1− ρ2η2),

or after some reorganizing

X2 = (ξ2 + ρσ2
x1−ξ1

σ1
) + (σ2

√

1− ρ2) · η2.

expectation standard deviation
(1.2)

Here η2 is the only random term and, by definition, X2 is normal with mean and standard deviation

E(X2|x1) = ξ2 + ρσ2
x1 − ξ1

σ1
and sd(X2|x1) = σ2

√

1− ρ2. (1.3)

We are dealing with a conditional distribution. As x1 is varied, then so does the expectation
and (for other models) also standard deviation.

Survival modelling
Let Y be the length of life of an individual. A central quantitiy in life insurance is

tpy0
= Pr(Y > y0 + t|Y > y0), (1.4)

called the survival probability. This is the likelihood that a person of age y0 lives at least t
longer. If F (y) is the distribution function of Y , then from (1.1)

tpy0
=

1− F (y0 + t)

1− F (y0)
, y0 > 0. (1.5)

Survival probabilities often apply on increments of a given increment h, for example

yl = lh l = 0, 1 . . . and tk = kh k = 0, 1 . . . .
age time
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and will be written kpl0 when y0 = l0h and t = kh. The probability of surviving the coming k time
steps must be equal to

kpl0 = 1pl0 × 1pl0+1 × · · · × 1pl0+k−1,
first interval second interval k’th interval

(1.6)

and survival modelling is built up from the one-step probabilities 1pl; see Section 3.4 for a specific
example.

Over threshold modelling
Conditional probabilities of exactly the same type is needed in property insurance too, particularly
in connection with large claims and re-insurance. For a given threshold a we seek the distribution
of

Z = Y − a given that Y > a. (1.7)

We can write it down by replacing t and y0 on the right in (1.5) by z and a. Thus

Pr(Z > z|Y > a) =
1− F (a + z)

1− F (a)
,

where F (y) is the distribution function of Y . When differentiated with respect to z, this leads to

fa(z) =
f(z + a)

1− F (a)
, z > 0. (1.8)

as the density function for the amount exceeding a given threshold. Tail distributions of this type
possess a remarkable property discovered by Pickand (1975). For most distributions used in prac-
tice, precisely if f(y) is not identically zero above some upper limit, then fa(z) become either a
Pareto density or an exponential one1 as a → ∞. This applies no matter which distribution we
started with and suggests Pareto models for extreme tails ; see Chapter 9.

Risk hetereogenity
It was in Chapter 3 suggested that random variation for claim frequency N in property insurance
should be described by (n = 0, 1, . . .)

Pr(N = n|µ) =
λn

n!
exp(−λ) where λ = µT

Policy

or λ = JµT ;
Portfolio

see (??)and (??). The central parameter is µ, the claim intensity. Why should that quantity nec-
essarily be the same for everybody? In automobile insurance where drivers are of different ability,
there must be discrepancies. Neither do general conditions from one period to another necessarily
stay the same. Weather influencing driving is an example, in some countries causing considerable
variation from one year to another; see Chapter 8.

Modelling is the same whether µ affects policies indvidually or the entire portfolio collectively.

1The exponential model is a limiting member of the Pareto class; see Section 2.6 and the limit is therefore
a member of a generalised Pareto class.
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The claim frequency observed (N for an individual or N for a portfolio) is the outcome of two
experiments in a hierarchy. First µ is drawn randomly and then N or N through a conditional
model given µ; i.e.

µ = ξZ, N |µ ∼ Poisson(µT ) and µ = ξZ, N|µ ∼ Poisson(JµT ).
policy level portfolio level

(1.9)

Clearly Z is positive, and we should impose E(Z) = 1 to make ξ the mean intensity. The standard
model for Z is Gamma(α), one of the distributions introduced in Section 2.6. Then

E(µ) = ξ and sd(µ) = ξ/
√

α, (1.10)

and the variability in µ, controlled by α, is removed when α→∞. In the limit µ becomes fixed as ξ.

Common risk factors
The preceding example is a special case of a more general viewpoint. A random variable ω is called
a common factor for X1, . . . , XJ if

X1, . . . , XJ are conditionally independent given ω (1.11)

That is precisely the situation when the same random intensity µ affects all claim frequencies
N1, . . . , NJ . Of course, one could also envisage a common random background influencing sizes
of claims, and we have already (in Chapter 5) met the idea as the market component in CAPM
models. The latter is directly observable whereas the others are not. For example, a random inten-
sity µ is only felt though its indirect effect on claim frequencies. That is an important distinction.
Common factors we do not observe or measure directly are called hidden or latent.

Whether hidden or not common factors invariably increase risk and they are impossible to di-
versify. Figure 6.1 is a simulated example where claim frequency over 25 years were generated for
one ‘small’ and one ‘large’ car insurance portfolio. The risk, expressed though µ, changed every
year and was the same for all policies. Suppose µ follows a Gamma model. Claim frequencies are
then generated through

Z∗ ∼ Gamma(α), µ∗ ← ξZ∗ and then N ∗ ∼ Poisson(Jµ∗T ),

The experiments in Figure 6.1 were run as 25 independent drawings for each of m = 20 scenarios
plotted jointly. Underlying parameters were

ξ = 5%, α = 100, T = 1,

which means that claim frequency per car is 5% in an average year and the standard deviation 10%
of that; see (1.10). Fluctuations in Figure 6.1 seem to match this fairly well2, but the main point
is the uncertainty which is relative terms is no smaller for the large portfolio. That runs contrary
to what has seen before (Section 3.2) and reflects that the effect of common factors isn’t removed
through size. The mathematics is given in Section 6.3.

2The oscillations in both plots go out to about ±20% of the position of the straight line, and the 10%
relative standard deviation emerges when you divide on two.
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Figure 6.1 Simulated portfolio claim frequency scenarios under annual change of risk

Monte Carlo distributions
Simulation experiments are often run from parameters that have been estimated from historical
data. The distribution of the simulations are then influenced by estimation error in addition to
ordinary Monte Carlo randomness. To be specific, suppose claim frequency N against a portfolio
follows the ordinary Poisson model and let µ̂ be the estimated claim intensity (see Chapter 8 for
the estimation method). The scheme is then

historical data −→ µ̂ −→ N ∗,
estimation Monte Carlo

and the question is how we examine the impact of both sources of error. A first step is to notice
that the model for N ∗ really is a conditional one; i.e

Pr(N ∗ = n|µ̂) =
(JT µ̂)n

n!
exp(−JT µ̂), n = 0, 1, . . . ,

and we must combine with statistical errors in the estimation process. This is carried out in Chapter
7.

1.3 Hierarchic arguments and hidden risk

Introduction
Much stochastic modelling is concerned with mean and standard deviation and conditional mod-
elling is no exception. Let

ξ(x) = E(Y |x) and σ(x) = sd(Y |x) (1.12)

be the conditional mean and standard deviation of Y given X = x. In the normal case ξ(x) is a
straight line and σ(x) a constant; see (1.3). Conditional expectation is known as the regression
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of Y on X and leads to regression analysis when both X and Y is observed. The familar linear
one, associated with the normal distribution, is probably not among the most important methods
for actuarial science (and is not covered in this book)3. Other forms of regression analysis will be
introduced in Part II.

This section is principally concerned with situations where X is not observed. The issue ad-
dressed is how conclusions on Y are drawn from model specifications like (1.12). We are dealing
with hierarchic structures where Y is randomly influenced by randomness in X. The hidden factors
behind risk hetereogenity in the preceding section are examples, and a lot will be said on those. A
complete stochastic model is not assumed. Yet it is possible to say quite a lot about the impact of
randomness in X. Property insurance may be the most fruitful area for the approach, and most of
the examples come from there. The mathematical tool is two important operational rules.

The double rules
The general formulation replaces X with a random vector X of an arbitrary number of variables.
Then, as is proved in Appendix A,

E(Y ) = E{ξ(X)}
double expectation

for ξ(x) = E(Y |x) (1.13)

and

var(Y ) = var{ξ(X)} + E{σ2(X)}
double variance

for σ(x) = sd(Y |x). (1.14)

Note that ξ(X) and σ2(X) both are random variables. We may calculate their expectation and
variance, and when they are combined as shown, we end up with the expectation and variance of
Y . The double variance formula is a decomposition into two (positive) contributions to var(Y ) and
has consequences reaching far. A similar rule for double covariances is discussed in Exercise 6.3.7.

Portfolio risk in property insurance
Aggregated claims in property insurance are easily studied through the double rules. Consider the
model from Chapter 3; i.e.

X =
N
∑

i=1

Zi

where N , Z1, Z2 . . . are stochastically independent. Let E(Zi) = ξz and sd(Zi) = σz. Elementary
rules for expectation and variance of sums yields

E(X |N ) = N ξz and var(X|N ) = Nσ2
z .

To incorporate claim frequency N as an additional source of randomness take Y = X and X = N
in (1.13) and (1.14). Then

var(X ) = var(N ξz) + E(Nσ2
z ) = var(N )ξ2

z + E(N )σ2
z

3CAPM and some other models in finance are exceptions and linear regression is one of the key methods
in the related field of econometrics.

6



so that

E(X ) = E(N )ξz and var(X ) = E(N )σ2
z + var(N )ξ2

z (1.15)

which are useful formulas. They are applied in Exercise 6.3.1 when N follows a pure Poisson dis-
tribution and put to another use below.

The effect of common risk
Common factors were introduced in the preceding section as a model for which X1, . . . , XJ are
conditionally independent given a random variable ω. Let

ξ(ω) = E(Xj |ω) and σ(ω) = sd(Xj |ω)

be the conditional mean and standard deviation and suppose (for simplicity) that they are the same
for all j. We seek the unconditional mean and standard deviation for their sum X = X1 + . . .+XJ .
First note that

E(X|ω) = Jξ(ω) and var(X|ω) = Jσ2(ω),

and we may invoke the double rules with Y = X and X = ω. By (1.14)

var(X ) = var{Jξ(ω)} + E{Jσ2(ω)} = J2var{ξ(ω)} + JE{σ2(ω)}

which with (1.13) leads to

E(X ) = JE{ξ(ω)} and sd(X ) = J
√

var{ξ(ω)} + E{σ2(ω)}/J ,
common ω

(1.16)

and standard deviation is of the same order of magnitude J as the expectation itself provided
var{ξ(ω)} > 0. Such risk can not be diversified away by increasing the portfolio size. Note the
difference from the situation without common risk factors. Standard deviation is then proportional
to the square root

√
J , and becomes insignificant in comparision with the mean as J grows.

The argument also works when expectation and standard deviation ξj(ω) and σj(ω) depend on
j. Now their means ξ̄(ω) and σ̄(ω) replace ξ(ω) and σ(ω) in (1.16).

Random variation in claim frequency.
The preceding argument enables us to understand how random intensities µ1 . . . , µJ influence the
claim frequency N = N1 + . . . + NJ of the portfolio. Consider the following two sampling regimes:

µ1 = . . . = µJ = µ
common factor

or µ1, . . . , µJ all independent.
individual parameters

On the left a common (random) factor µ is allocated all policy holders jointly whereas on the
right there is one intensity for each individual. Claim frequencies N1, . . . , NJ are in either case
conditionally independent given µ1, . . . , µJ and conditionally Poisson distributed. In particular,

E(Nj |µj) = µjT and var(Nj |µj) = µjT.
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If all µj = µ, this yields.

E(N|µ) = JµT and var(N|µ) = JµT.

Let ξµ and σµ be the mean and standard deviation of µ, and it follows from (1.16) that

E(N ) = JTξµ and sd(N ) = JT
√

σ2
µ + ξµ/(JT ).

common µ

(1.17)

Note that the standard deviation is (almost) proportional to the number of policies J . This explains
the simulated patterns in Figure 6.1 where relative random uncertainty seemed unaffected by J .

Things are radically different when µ1, . . . , µJ are drawn independently of each other. Mean and
standard deviation for individual Nj are then obtained then by inserting J = 1 in (1.17). This
yields

E(Nj) = Tξµ and sd(Nj) = T
√

σ2
µ + ξµ/T .

Since N1, . . . , NJ are independent, both means and variances may be added to determine what they
are at portfolio level. This yields

E(N ) = JTξµ and sd(N ) = T
√

J(σ2
µ + ξµ/T ).

µ individual

(1.18)

The mean is the same as in (1.17), but the standard deviation is changed to the familiar form
proportional to

√
J .

Portfolio risk and variation in claim intensity
The eventual target is the portfolio liability X itself. We shall now analyse how it depends on
random variation in claim intensity by inserting the expressions for E(N ) and sd(N ) into (1.15)
For the mean this yields

E(X ) = Jξµξz, (1.19)

the same whether µ is generated as a common value for the entire portfolio or individually for each
policy. That is different with the standard deviation, but a little algebra (detailed in Section 6.8)
leads to

sd(X ) =
√

Jξµ(σ2
z + ξ2

z) × √
1 + δγ

for pure Poisson due to random µ
(1.20)

where

δ =
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
and γ =

1 for indvidual µ
J for common µ

(1.21)

This lengty expression tells a lot. The factor
√

1 + δγ on the very right in (1.20) is caused by the
uncertainty in µ and makes portfolio uncertainty grow.
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But by how much? In practice δ is quite small (see Exercise 6.3.2) which leads to the follow-
ing observations. Suppose µ1, . . . , µJ are drawn independently of each other. Then

√

1 + δγ =
√

1 + δ
.
= 1 + δ/2,

not a high increase in risk. On portfolio level hetereogenity between policies often contributes little
extra risk. This changes drastically when µ is a collective risk factor. Now

√
1 + δγ =

√
1 + δ

which for large J could be huge.

1.4 The role of the conditional mean

Introduction
The conditional viewpoint is the topic of this section too, but now X is going to be a quantity
observed. This opens for

Ŷ = ξ(X) = E(Y |X) (1.22)

as a way of guessing the value of an unknown, possibly future Y . In practice many quantities
could be hidden in X, and bold face notation has therefore been used. We shall see below that
in theory (1.22) is the best way such prediction of Y can be carried out. That is a celebrated
result in engineering, statistics and elsewhere, yet not that prominent in actuarial science, since we
are often more concerned with summaries such as mean and percentiles than with predicting the
actual outcome of a future Y .

But the conditional mean E(Y |x) has another, important usage. Suppose X is the information
possessed. The conditional mean then conveys what is expected of Y given that knowledge and
could be a natural price for a risk Y . Shouldn’t what we charge reflect what we know, say as a sort
of conditional pure premium? This viewpoint is of relevance in insurance and lead in finance to the
theoretical interest rate curve, the most important example of this section. A word on the meaning
of X in the present context is needed. We might think of it as all present and past observations.
Theoretical literature in mathematical finance often refers to X as a sigma-field (typically denoted
F), but it is perfectly possible to understand the ideas involved without this formalism.

Optimal prediction
The central mathematical properties of the conditional mean are

E(Ŷ − Y ) = 0 and E(Ŷ − Ỹ )2 ≤ E(Ỹ − Y )2 for all Ỹ = Ỹ (X).
expected error expected squared error

(1.23)

On the right Ỹ = Ỹ (X) is an arbitrary function of X. Here the left hand side, which is merely a
rephrasal of the rule of double expectation (1.13), signifies that expected prediction error Ŷ − Y
is zero. The prediction Ŷ is thus unbiased; more on that concept in Chapter 7. On the right the
inequality shows that the expected squared error is smaller than for any other way of utilizing the
information X. The proof is simple, and is given in Section 6.8. In this sense the conditional mean
is the most accurate way information can be exploited.

The conditional mean in property insurance
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The principal application of the conditional mean in property insurance is to differentiated pricing,
based on individual assesment of risk. There are two traditions. One works from the record of each
policy holder. Let X1, . . . , Xn be annual claims n years back. The question is what this conveys
about the risk of the individual and the expected, future claim π = E(X). A natural estimate is
the conditional expectation given the claim record, i.e.

π̂ = E(X|X1, . . . Xn).

This idea will lead to the credibility theory in Chapter 10. The underlying model is of the common
factor type where X1, . . . , Xn, X are conditionally independent (and identically distributed) given
some underlying random quantitiy ω assigend the individual.

Another (and increasingly popular) way it to link expected claim or pure premium to explana-
tory variables. Typical examples are age and sex of car owners. We then let experience with the
group influence the premium charged. Usually claim frequency varies much stronger among the
population than claim size, and their modelling is often carried out separately. For example, we
shall work with

E(N |x1, x2, . . .);

i.e. expected claim frequency given information x1, x2, . . . on age, sex and other things. How such
models are built is discussed in Chapter 8, see also Ecercise 6.4.5

Interest rate prediction
The rest of the section deals with interest rates, and we shall first examine statistical forecasts. As
an example consider the Vasicĕk model of Section 5.7, under which the rate of interest at time tk

can be written

rk = ξ + σ(εk + aεk−1 + . . . + ak−1ε1) + ak(r0 − ξ);

see (??). Here r0 is known at t0 = 0 (current time) and ε1, ε2, . . . are random disturbances of the
future. Suppose they are independent with zero mean. That is the standard assumption which
yields

E(rk|r0) = ξ + ak(r0 − ξ) and sd(rk|r0) = σ

√

1− a2k

1− a2
.

These formulae were derived in Section 5.7. On the left is the best prediction of rk if the Vasicĕk
model is true.

What would the accuarcy be? A quick look is provided by the formula for the standard devia-
tion. Possible annual parameters could be σ = 0.016 and a = 0.7. If so standard deviation becomes
1.4% after one year and 2.2% after five. This signifies huge errors. Forecasting interest levels
through purely statistical procedures is futile.

Theoretical interest rate curves
Conditional arguments have in this context another (and more important) usage. Zero-coupon
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bonds were introduced in Section 1.4. For the delevery of one money unit at tk = kh the market
charges P (0:k) today. Theoretical models for such instruments will be needed in Chapter 15. We
shall write those P (r0, tk) highlighting their link to the present rate of interest r0 and the time
to expiry of the bond. With the possession of such models we may simulate future bond prices.
Simply replace r0 by a simulation r∗i of its value at ti and interprete P (r∗i , tk) as the bond prices at
that time; for details see Section 15.3. Of course, as k is varied P (r0, tk) should match the observed
prices P (0:k). That is how the parameters in their expression usually are determined.

The most common construction is to take

P (r0, tk) = EQ(Dk|r0) where Dk =
1

1 + r1
× · · · × 1

1 + rk
(1.24)

where DK is the stochastic discount we might have used at t0 = 0 had the future rates r1, . . . , rk

been known. Its expected value is the theoretical value of the bond. An implicit assumption is that
interest rates behave Markovian, see Section 6.5 below. Otherwise historical rates prior to the
current one r0 would influence our belief in their future values. The subscript Q in (1.24) refers to
risk-neutrality; see Section 3.6 and (above all) Chapter 14.

As k is varied, the term structure of theoretical bond prices is defined. By passing to con-
tinuous time it has for many interest rate models been possible to derive simple mathematical
expressions. Many of them have actually been proposed for that very purpose; see Section 6.9.
Consider the Vasicĕk model

rk − rk−1 = aqh(ξq − rk−1) +
√

hσqεk,

where h is included in the mathematical notation; see (??) and where parameters are q-subscripted
to link them to the risk-neutral model. Calculations of (1.24) under this model were carried out
in Exercises 5.7.12-16 though a standard limiting process for which h→ 0, k →∞ while t = hk is
kept fixed. That lead to the expression

P (r0, t) = eA(t)−B(t)r0 (1.25)

where

B(t) =
1− e−aqt

aq
and A(t) = (B(t)− t)

(

ξq −
σ2

q

2a2
q

)

− σ2
qB(t)2

4aq
. (1.26)

We may interprete P (r0, t) as the price in a Vasicĕk world of a zero-coupon bond maturing at time
t when the initial rate of interest is r0.

Term structure by Monte Carlo
It is perfectly feasible to approximate P (r0, tk) through Monte Carlo when mathematical expres-
sions are not available. The following implementation is adapted to the Black-Karisinsky model,
but it can easily be modified.

Algorithm 6.1 The Black-Karisinsky term structure

0 Input: m, ξq, aq, σq, r0, h and σx = σq/
√

1− a2
q, x0 = log(r0/ξq) + σ2

x/2
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P ∗(k)← 0 for k = 1, . . . ,K %P ∗(k) the theoretical bond price

1 Repeat m times
2 X∗ ← x0, D∗ ← 1/m %D∗ will serve as discount

3 For k = 1, . . . ,K do
4 Draw ε∗ ∼ N(0, 1) and X∗ ← aqX

∗ + σqε
∗

5 r∗ ← ξqe
−σ2

x/2+X∗

and D∗ ← D∗/(1 + r∗)
6 P ∗(k)← P ∗(k) + D∗ %The k-step discount summarized

7 Return P ∗(k) for k = 1, . . . ,K

The algorithm simulates future rates of interest and updates the stochastic discounts as it goes
through the inner loop over k. Output from the outer loop are Monte Carlo approximations P ∗(k)
to P (r0, tk) for k = 1, . . . ,K. Re-runs for many different r0 yield a table in k and r0 that could be
used with evaluations as those in Section 15.

If you want the computations to run a finely meshed time scale, you must adapt the parame-
ters as explained in Section 5.7. The examples in Figure 6.3 have been run om a crude annual one
with parameters

ξq = 4%, aq = 0.7, σq = 0.25 and ξq = 4%, aq = 0.5, σq = 0.31317,

where the volatilities σ have been adjusted to make standard deviations of rk coincide at steady
state. It is more illuminating to consider the yield curve than the bond prices themselves. The
quantities plotted are thus

r̄∗(0:K) = P ∗(0:K)−1/K − 1,

which is the average rate of interest over the period in question; see Section 1.4. The initial rate
was varied between r0 = 2%, 4% 6% 8% and 10%. All yield curves have an exponential shape up or
down depending on the start. It takes in either case a long time to approach the average ξ = 4%.
the speed depends on of aq.

1.5 Joint probability models

Introduction
A general probabilitic description of dependent random variables X1, . . . , Xn is provided by joint
density functions f(x1, . . . , xn) or joint distribution functions F (x1, . . . , xn). The latter are
defined as the probabilities

F (x1, . . . , xn) = Pr(X1 ≤ x1 . . . , Xn ≤ xn).

under variation of x1, . . . , xn and f(x1, . . . , xn) is their n-fold partial derivative with respect to
x1, . . . , xn. In practice we may think of is as the likelihood of the event4

X1 = x1, X2 = x2, . . . , Xn = xn.

4Formally, in a strict mathematical sense, such events have probability zero.
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Figure 6.2 Interest rate curves under the Black-Karisinsky model when the initial rate of interest

is varied. 10000 simulations.

Textbooks in probability and statistics often start with density functions. They play a vital role in
checking logical consistency in stochastic modelling, but in this book that is always obvious, and we
need not go into it. Joint densities are also needed for the likelihood criterion in the next chapter,
which often opens for the best possible use of historical data. The multinomial distribution below
and the copulas in Section 6.7 are examples of modelling joint densities directly. Usually this book
has followed the tactics of defining models in the way they are simulated, and we shall introduce
joint density functions in that way too.

Factorization of joint densities
Whether X1, . . . , Xn is a series in time or not we may always envisage them in a certain order.
This observation opens for a general way to simulate. Simply go recursively through the scheme

Sample X∗
1 X∗

2 |X∗
1 · · · X∗

n|X∗
1 , . . . , X∗

n−1

Probabiltities f(x1) f(x2|X∗
1 ) · · · f(xn|X∗

1 , . . . , X∗
n−1),

where each drawing is conditional on what has come up before. We start by generating X1 and end
with Xn given all the others. The order selected does not matter in theory, but in practice there is
often a natural sequence to use. If it isn’t, look for other ways to do it.

Multiplying probabiltities of single events leads to probabiltities of joint events; see Appendix
A. Here this exercise leads to the general factorization

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , xn−1),
general factorization

(1.27)

which reflects that the sampling scheme above produces a Monte Carlo simulation from f(x1, . . . , xn).
In (1.27) the joint density is broken down on a sequence of conditional ones. Several special cases
are of interest.
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Types of dependence
The model with a common random factor in Section 6.2 is of the form

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1).
Common factor: First variable

(1.28)

Here the conditional densities only depend on the first variable, and all the variables X2, . . . , Xn

are conditionally independent given the first. Full independence means

f(x1, . . . , xn) = f(x1)f(x2) · · · f(xn).
Independence

(1.29)

Finally, there is the issue of Markov dependence, typically associated with time series. Now Xk

is recorded at time tk. The model is

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|xn−1),
Markov dependence

(1.30)

where Xk only depends on the preceding Xk−1, those before tk−1 being irrelevant. This is the
standard model in life insurance, and it will be discussed in the next section. Both the random
walk model and the first order autoregressive model in Section 5.7 were of the Markov type. How
the general sampling scheme above is adapted is obvious, but the Markov situation is so important
that the steps are summarized in the following algorithm:

Algorithm 6.2 Markov sampling
0 Input: Conditional models
1 Generate X∗

1

2 For k=2,. . . ,n do
3 Generate X∗

k given X∗
k−1 %Sampling from f(xk|X∗

k−1)

4 Return X∗
1 , . . . , X∗

n

Examples are given in Section 6.6 and in Exercise 6.5.1.

The general normal density
Most famous of all joint density functions is the Gassian one; i.e.

f(x) = (|2πΣ|)−1/2 exp{−1

2
(x− ξ)′Σ−1(x− ξ)} (1.31)

where ξ = (ξ1, . . . , ξn)′ is the vector of expectations and Σ the covariance matrix; see Chapter 55.
In the present book this expression is of little importance.

The multinomial density and delayed claims
In some branches of insurance there are long delays between the accident that caused the damage

5The notation |2πΣ| signifies the determinant of the matrix 2πΣ; see Appendix B.
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and its reporting and settling financially. It could take up to a couple of decades and in extreme
cases even longer; the actual number of claims may not be known until long after6. The insurance
industry is in any case responsible, and must be able to project the economic consequences of the
delay; more on that in chapter 8.

Let n be the number of claims arising in a given year with Nk being those settled k years af-
ter the event, k = 0, 1, . . . ,K. Here K is the maximum delay and

N0 + N1 + . . . + NK = n,

Suppose we take the position that each insurance incident even after the event is a chance experi-
ment in terms of how long it takes for the claim to be to liquidated. Let qk be the probability of k
years. Clearly

q0 + . . . + qK = 1.

There are n such trials, reasonably regarded as independent of each other, and elementary courses
in probability show that Nk must be a binomial random variable with sucess probablity qk. The
extension to many events simultaneously is the multinomial model, under which the density
function is

f(n0, . . . nK |n) =
n!

n0!...nK ! qn0

0 . . . qnK

K , where n0 + . . . + nK = n; (1.32)

see Exercise 6.5.8 for its derivation. Note the conditional statement given N = n, which is itself a
random variable (and which will not be fully known until later). Sampling can be carried out by
means of the method of guide tables in Chapter 4; see also Exercise 6.5.7.

1.6 Markov chains and life insurance

Introduction
Liability risk in life and pension insurance are based on probabilistic descriptions of life cycles,
as those in Figure 6.3. The individual on the left dies at 82 having retired 22 years earlier at 60,
whereas the other is a premature death at 52. A pension scheme consists of thousands (or millions!)
of members like those, each with his individual life cycle. Disability is a little more complicated,
since there might be transitions back and forth; see below. It is worth noting that a switch from
active to retired is determined by a clause in the contract, whereas death and disability must be
described in random terms.

Each of the categories of Figure 6.3 will be called a state. A life cycle is a sequence {C l} of
such states with Cl being the category occupied by the individual at age yl = lh. We may envisage
{Cl} as a step function, jumping occasionally from one state to another. There are three of them
in Figure 6.3. This section demonstrates how such schemes are described mathematically. Do
we really need it? After all, it was in Chapter 3 demonstrated that uncertainty due to life cycle
movements rarely is very important. But that doesn’t mean that the underlying stochastic model

6Injury in automobile accidents is an example. It may take long before the symptoms of a neck or back
ailment emerge.
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Figure 6.3 The life cycles of two members of a pension scheme.

is irrelevant. It is needed both to compute the expectations defining the liabiltities and to eveluate
portfolio uncertainty due to errors in parameters.

Markov modelling
Consider random step functions {Cl} jumping between a limited number of states. The most fre-
quently applied model is the Markov chain. What makes such time series evolve is the so-called
transition probabilities

pl(i|j) = Pr(Cl+1 = i|Cl = j). (1.33)

Algorithm 6.2 tells us how life cycles governed by a Markov chains develop. At each point in time
there is a random experiment taking the state from its current j to a (possibly) new i. Note that
the probabilitites defining the model do not depend on the track record of the indvidual. That is
the Markov assumption. Monte Carlo is a good way to understand how such models work; see
Exercises 6.6.2 and 6.6.5.

Transition probabilities are usually different for men and women (not reflected in the mathematical
notation), and it is (of course) essential that they depend on age l. A major part of them always
come from the survival probabilities 1pl introduced in Section 6.2; see (1.4). For a simple pension
scheme, such as in Figure 6.3, the three states active, retired and dead are linked with the transition
probabilities shown.

1pl active

active �
�

�
�*

H
H

H
Hj

1− 1pl dead

1pl retired

active �
�

�
�*

H
H

H
Hj

1− 1pl dead

1pl retired

retired �
�

�
�*

H
H

H
Hj

1− 1pl dead

Before retirement At retirement After retirement

The details differ according to whether we are before, at or after retirement. Note the middle dia-
gram in particular, where the individual from a clause in the contract moves from active to retired
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(unless he dies).

A disability scheme
Disability modelling, with movements back and forth between states, is more complicated. Consider
the following scheme.

disabled

active �
�

�
�*

H
H

H
Hj

�
�

�
��

?

dead

where

pi|a = Pr(disabled|active)

pa|i = Pr(active|disabled).

A person may become disabled (state i), but there is also a chance that he returns to active (state
a). Such rehabilitations are not too frequent as this book is being written (2005), but it could
be different in the future, and we should certainly be able to to handle it mathematically. New
probabilities are then needed in addition to those describing survival. They have above been de-
noted pi|aand pa|i. The former is the probability of moving from active to disabled and the other
the opposite. Both ususlly depend on age l which has been suppressed in the mathematical notation.

The transition probabilities for the scheme must combine survival and disability/rehabilitation.
The full matrix are as shown:

To new state
From Active Disabled Dead Row sum

Active 1pl × (1− pi|a) 1pl × pi|a 1− 1pl 1

Disabled 1pl × pa|i 1pl × (1− pa|i) 1− 1pl 1

Dead 0 0 1 1

Each entry is the product of input probabilities. For example, to remain active (upper left cor-
ner) the indvidual must survive and not become disabled, and similar for the others. Note the
row sums. They are always equal to one (add them and you discover that it is true). Any set of
transition probabilities for Markov chains must satisfy this restriction, which merely reflects that
the individual always moves somewhere or stays.

Numerical example
Figure 6.4 shows a portfolio development that might occur in practice. The survival model was the
same as in Section 3.4, i.e.

log(1pl) = −0.0009 − 0.0000462 exp(0.090767 × l)

Their corresponding annual mortalitites 1ql = 1−1pl are plotted in Figure 6.4 left. Note the steep
increase on the right for the higher age groups where the likelihood of dying within the coming
year has reached 2% and more.

This model corresponds to an average length of life of 75 years and will be further discussed
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Figure 6.4 A disability sceme in life insurance: Mortality model (left) and portfolio simulation

(right).

in Chapter 12. It is reasonably realistic for males in a developed country. Disability depends
on the current political climate and on economic cycles and is harder to hang numbers on. The
computations in Figure 6.4 are based on

pi|a = 0.7%, and pa|i = 0.35%,

which is no more than speculation. Note the rehabilitation rate, which is probably too high.

How individuals distribute between the three states are shown in Figure 6.4 right for a portfo-
lio originally consisting of one million 30-year males. The development has been simulated using
Algorithm 6.2. Details are discussed in Exercise 6.6.2. There is very little Monte Carlo uncertainty
in portfolios this size and one single run is enough. At the start all are active, but with age the
number of people in the other two classes grow. At 65 years some 75% remain alive, a realistic
figure. What is not true in practice is the downwards curvature in the disability curve which is due
to the unrealistic, age-independent specification of the disability rate.

1.7 Introducing copulas

Introduction
The copula concept is an old one, going back to the mid twentieth century. Yet it is only in fairly
recent years it has attracted interest as a tool for actuarial and financial risk. An early contribution
is Carriere (1987). The idea has much to do with sampling by inversion; see Chapter 2. Let X1 and
X2 be random variables with strictly increasing distribution functions F1(x1) and F2(x2). Then

X1 = F−1
1 (U1) and X2 = F−1

2 (U2),

where U1 and U2 are uniformly distributed. They do not have to be independent which is precisely
what coupla modelling utlizes. Dependence are formulated in terms of U1 and U2, which are then
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mapped back to X1 and X2 through the transformations. Note that the dependence now has be-
come a modelling issue completely detached from the distributions of X1 and X2. The power of
this idea will emerge below. All bivariate and (more generally multivariate) stochastic models can
be represented in this way.

Copulas differ from the other approaches to modelling in this chapter in that it is non-constructive.
The way it is defined does not give a simple recepy for how such models are simulated in the
computer. That is an area begging for development. What is available has influenced the way this
section has been written. One model with attractive theoretical properties and at the same time
easy to simulate is the Clayton family. This is one of the most frequently applied copulas, member
of the Archimedean class, also widely used. Most of the section is devoted to those. We start
bivariately and extend to J variables at the end.

What is a copula?
A copula is a joint distribution function for dependent uniform random variables. In the bivariate
case this means the function

H(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2), (1.34)

defined for all u1 and u2 between 0 and 1. For a valid model we must require H(u1, u2) to be
non-decreasing in both u1 and u2 and

H(u1, 0) = 0, H(0, u2) = 0 (1.35)

H(u1, 1) = u1, H(1, u2) = u2

for any u1 and u2. For example

H(u1, 1) = Pr(U1 ≤ u1, U2 ≤ 1) = Pr(U1 ≤ u1) = u1,

and similar for the others. Any function H(u1, u2) serving as a copula must satisfy (1.35).

The most immediate example is

H(u1, u2) = u1u2,

making U1 and U2 independent. More interesting is the Clayton copula for which

H(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ, 0 < u1, u2 < 1, (θ > 0) (1.36)

Here θ is a positive parameter (negative ones will be allowed later). It is easily verified that (1.35)
is satisfied. The independent copula appears in the limit as θ → 0; see Exercise ?. The Clayton
model has a number of attractive properties and is one of the most useful couplas.

Copula modelling
The previous discussion has suggested the following modelling strategy. Start by finding appro-
priate distribution functions F1(x1) and F2(x2) for X1 and X2 and then throw a copula H(u1, u2)
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around them to account for dependency. From what was said above the joint distribution function
for the pair (X1, X2) becomes

F (x1, x2) = H(u1, u2) where u1 = F1(x1), u2 = F2(x2).
copula modelling univariate modelling

(1.37)

This is actually a general representation, discovered by Sklar (1959) and bears his name. Any
bivariate distribution function F (x1, x2) can be written in this form, provided the marginal distri-
bution functions F1(x1) and F2(x2) are strictly increasing. A modified version holds for counts7,
and Sklar’s result can be extended to any number of variables.

In (1.37) either of the relationships on the right may be replaced by their antitetic twin (see
Section 4.5). This produces the three additional versions

u1 = F1(x1), 1− u2 = F2(x2) orientation (1,2)

1− u1 = F1(x1), u2 = F2(x2) orientation (2,1)

1− u1 = F1(x1), 1− u2 = F2(x2) orientation (2,2),

(1.38)

all combined with the same copula on the left in (1.37) . The effect (see Figure 6.5) is to rotate the
copula patterns 90◦, 180◦ and 270◦ compared to the orginal one which will be called orientation
(1, 1).

The Clayton copula
The copula bearing the name of the British statistician David Clayton was introduced above. Its
defintion through (1.36) can be extended to include negative θ down to −1, provided the mathe-
matical expression is modified to

H(u1, u2) = max{(u−θ
1 + u−θ

2 − 1)−1/θ , 0} (θ ≥ −1). (1.39)

Again it is easy to check that the copula requirements (1.35) are satisfied when θ ≥ −1. For
negative θ, the expression is positive when

u2 > (1− u−θ
1 )−1/θ.

Below that threshold the copula is zero; see also Figure 6.6 right. Usually restrictions of that kind
are undesirable, and positive θ are more useful for actuarial science. Still, when the negative part
is incuded, the family in a sense cover the entire range of dependency that is logically possible; see
Exercises ?? and ??.

Examples of structures generated by the Clayton copula are shown in Figure 6.5. The two marginal
distributions were normal with mean ξ = 0.005 and volatility σ = 0.05, precisely as in Figure 3.3.
Most striking is the cone-shapes patterns which signify unequal degree of dependence in unequal
parts of the space. Consider, for example, the plot in the upper, left corner where correlation in
downside returns are much stronger than for upside ones. Such phenomena have been detected in
practice; see Longin and Solnik (2002). Consequences for downside risk could be serious (Chapter
12). Ordinary Gaussian models can’t capture this. The other plots in Figure 6.5 rotate patterns by

7The distribution functions are then not strictly increasing, as demanded by the theorem.
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Figure 6.5 Simulated financial returns from normals and Clayton copula.

varying the orientation of the copula. Dependence is adjusted by moving θ (high values for strong
dependence).

Conditional distributions for copulas
As elsewhere it is useful to examine the conditional models. Let

H(u2|u1) = Pr(U2 ≤ u1|u1)

be the conditional distribution function of U2 given U1 = u1. This turns out to be the partial
derivative of the orginal copula with respect to u1, i.e.

H(u2|u1) =
∂H(u1,u2)

∂u1
; (1.40)

see Section 6.8.

For the Clayton copula (1.36) straightforward differentiaton yields

H(u2|u1) = u
−(1+θ)
1 (u−θ

1 + u−θ
2 − 1)−(1+1/θ), (1.41)

where

0 < u2 < 1 for θ > 0,

(1− u−θ
1 )−1/θ < u2 < 1 for −1 ≤ θ < 0
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Figure 6.6 Conditional distribution functions for the second variable of a Clayton copula; given
first variable marked on each curve.

Below the lower threshold H(u2|u1) = 0. The conditional distribution functions have been plotted
in Figure 6.6 for θ large and positive on the left and large and negative on the right. Shapes for
u1 = 0.1 and u2 = 0.9 differ markedly, attesting to strong dependency, but the most notable feature
is a lack of symmetry. Consider the distributions on the left. When u1 = 0.1, the second variable
U2 is located in a narrow strip around that value, (i.e. very strong correlation), but if u1 = 0.9, the
range of variation for U2 is much larger. It is precisely this feature that creates the cones in Figure
6.5; see also Exercise ?? and ??.

How copula models can be simulated
The most obvious way of sampling copulas is to combine conditional sampling and inversion, as
follows:

Algorithm 6.3 Bivariate copulas
0 Input: The conditional copula H(u2|u1)
1 Draw U ∗

1 and V ∗ ∼ uniform
2 Determine U ∗

2 from

H(U∗
2 |U∗

1 ) = V ∗ %Equation, often demanding a numeric solution

3 Return U ∗
1 and U∗

2 .

The second step is an application of the inversion algorithm, and here there is a problem. For
most copulas analytical solutions do not exist, and a numerical procedure has to be used. This
obstacle isn’t insurmountable, but it does slow the procedure down, especially when there are
more than two variables. The Clayton copula is an exception. It is easy to see that the distri-
bution function (1.41) admits an easy solution. The details are worked out at the end of the section.
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Output from Algorithm 6.2 must be combined with inversion to generate the original variables
X1 and X2. Details depend on the orientation. The two most important ones are

X∗
1 = F−1(U∗

1 ) X∗
2 = F−1

2 (U∗
2 ) and X∗

1 = F−1(1− U∗
1 ), X∗

2 = F−1
2 (1− U∗

2 ).

For other possibilites; see Exercise ??.

Archimedean copulas
Perhaps the most important general class of copulas is the Archimedean one where

H(u1, u2) = φ−1{φ(u1) + φ(u2)}. (1.42)

Here the function φ(u) is a so-called generator. The Clayton copula is a special case. Its generator
and generator inverse are

φ(u) =
1

θ
(u−θ − 1), and φ(x)−1 = (1 + θx)−1/θ, (1.43)

where the inverse is found by solving φ(u) = x for u. If these expressions are inserted into (1.42),
the earlier expression for the Clayton copula emerges.

The Clayton generator is plotted in Figure 6.7 left for θ = 0.2. It is

• strictly decreasing and continous,
• with φ(1) = 0 and becomes infinite as u→ 0.

These ensure that the conditions (1.35) are satisfied. The other example in Figure 6.7 is

φ(u) = (1− u)3, 0 < u < 1,

an example of a polynomial copula. It satisfies all the conditions above with one exception. As
u→ 0 it remaining finite. A valid copula is still defined (Exercise 6.7.7), but it inevitably leads to
models where certain combinations of u1 and u2 are forbidden. Clayton copulas based on negative
θ) have the same property, and usually we do not want it. It is avoided if the generator is infinite
at the origin. Nelson (1997) lists many possibilites.

Both examples in Figure 6.7 are convex (curvature upwards). This is a natural additional con-
dition. The derivative φ′(u) is then increasing and possesses and inverse. It follows (Section 6.8)
that the equation in Algorithm 6.3 can be solved producing a simple sampling algorithm:

Algorithm 6.4 Archimedean copulas
0 Input: Convex generator φ(u).
1 Draw U ∗

1 and V ∗ ∼ uniform
2 Y ∗ ← φ′−1{φ′(U∗

1 )/V ∗} % Note: φ′(u) the derivative of φ(u)

3 U∗
2 = φ−1{φ(Y ∗)− φ(U∗

1 )}
4 Return U ∗

1 and U∗
2

23



u
0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

Generator: Clayton, index 0.2

u
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Generator: Polynomial

Figure 6.7 Generator functions for Archimedean copulas

If φ′−1(x) is difficult to find, it can be tabulated on a tight set of points prior to running the
algorithm. Table methods for sampling were discussed in Section 4.3.

Copulas with many variables
Some of the ideas and results above extend to J variables without much effort. A J -dimensional
copula H(u1, . . . , uJ) is the joint distribution function of J dependent uniform random variables
U1, . . . , UJ . Mathematical conditions similar to (1.35), but more complex have to be satisfied.
There is an Archimedean type which is an immediate extension of (1.42); i.e.

H(u1, . . . , uJ ) = φ−1{φ(u1) + . . . + φ(uJ)}. (1.44)

Here φ(u) is a generator of exactly the same type as in the bivariate case. The J uniforms are now
mapped back to the J original variables X1, . . . , XJ through the J inversions

X1 = F−1
1 (U1), . . . , , XJ = F−1

J (UJ ).

There are now 2J ways to rotate patterns through use of antitetic twins, not just 4.

Archimedean copulas are still convenient to sample, but a general extension of Algorithm 6.4
involves complex chains of derivatives of high order, beyond what is natural to include. For the
Clayton copula matters simplify. The following sampling algorithm is justified in Section 6.8:

Algorithm 6.5 The Clayton copula for J variables
0 Input: θ
1 S∗ ← 0 and P ∗ ← 1 %Initializing auxilliary quantities

2 Draw U ∗
1 ∼ uniform

3 For j = 2, . . . , J do
4 S∗ ← S∗ + (U∗

j−1)
−θ − 1 %Updating from preceding uniform

5 P ∗ ← P ∗(U∗
j−1)

1+θ/(1 + (j − 1)θ) %Here too
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6 Draw V ∗ ∼ uniform
7 U∗

j ← {(P ∗V ∗)−θ/(θ+j−1) − S∗}−θ %Next uniform

8 Return U ∗
1 , . . . , U ∗

J

This algorithm has been used for copula simulations in this book.

1.8 Mathematical arguments

Section 6.3
Portfolio risk We shall verify the formula (1.20) for the standard deviation of the portfolio risk
X starting with

var(X ) = var(N )ξ2
z + E(N )σ2

z ,

which is the right hand side of (1.15). Expressions for E(N ) and var(N ) were given in (1.17)
and (1.18). Those are

E(N ) = JξµT and var(N ) = JT 2(γσ2
µ + ξµ/T )

where γ = J or γ = 1 for common and independent sampling of the intensities. Inserting into the
expression for var(X ) yields

var(X ) = JT 2(γσ2
µ + Jξµ/T )ξ2

z + JξµTσ2
z = JTξµ(σ2

z + ξ2
z) + JT 2γσ2

µ.

or

var(X ) =
(

JTξµ(σ2
z + ξ2

z)
)

×
(

1 + γT
σ2

µ

ξµ

ξ2
z

ξ2
z + σ2

z

)

,

which is (1.20).

Section 6.7.
Conditional distributions for copulas Recall that

H(u1, u2) =

∫ u1

0

∫ u2

0
h(v1, v2) dv1 dv2,

writing h(u1, u2) for the (joint) density function. Hence

∂H(u1, u2)

∂u1
=

∫ u2

0
h(u1, v2) dv2,

or, since h(u1) ≡ 1 is the density for U1

∂H(u1, u2)

∂u1
=

∫ u2

0
h(v2|u1) dv2,
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where h(u2|u1) is the conditional density of U2. This is (1.40).

Justifying Algorithm 6.4 An Archimedean copula H(u1, u2) is according to (1.42) defined
through

φ{H(u1, u2)} = φ(u1) + φ(u2).

When both sides are differntiated with respect to u1, it follows by the chain rule that

φ′{H(u1, u2)}
∂H(u1, u2)

∂u1
= φ′(u1).

so that

H(u2|u1) =
φ′(u1)

φ′{H(u1, u2)

is the conditional distribution function of U2. It follows by the inversion algorithm that a simulation
U∗

2 is the solution of the equation

φ′(U∗
1 )

φ′{H(U∗
1 , U∗

2 )
= V ∗

where U ∗
1 and V ∗ are independent and uniform. This may equivalently be written

H(U∗
1 , U∗

2 ) = Y ∗ where Y ∗ = φ′−1{φ′(U∗
1 )/V ∗},

which is the quantity on line 2 in Algorithm 6.4. Hence

φ(U∗
1 ) + φ(U∗

2 ) = φ(Y ∗)

and when this is solved for U ∗
2 , Algorithm 6.3 follows.

Justifying Algorithm 6.5
When the Clayton generator and inverse (1.43) are inserted into (1.44), it follows that the math-
ematical expression for the J -dimensional Clayton copula is

H(u1, . . . , uJ ) = {
J
∑

j=1

u−θ
j − (J − 1)}−1/θ .

We shall find the conditional distribution function for UJ given the J − 1 others which equals the
partial derivative with respect to u1, . . . , uJ−1; i.e.

∂J−1H(u1, . . . , uJ)

∂u1 . . . ∂uJ−1
.

It is straightforwardly derived that

∂J−1H(u1, . . . , uJ)

∂u1 . . . ∂uJ−1
= {

J
∑

j=1

u−θ
j + J − 1)}−(1/θ+J−1) ×

J−1
∏

j=1

{u−(1+θ)
j (1 + (j − 1)θ)}
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or

∂J−1H(u1, . . . , uJ)

∂u1 . . . ∂uJ−1
= {u−θ

J + sJ−1}−(1/θ+J−1)/pJ−1

where

sJ−1 =
J−1
∑

j=1

u−θ
j − (J − 1) and pJ−1 =

J−1
∏

j=1

{u1+θ
j /(1 + (j − 1)θ)}

Suppose U ∗
1 , . . . , U ∗

J−1 have been generated and V ∗ is another uniform, drawn indepdently. Apply-
ing inversion we must solve with respect to U ∗

J the equation

∂J−1H(U∗
1 , . . . , U ∗

J)

∂u1 . . . ∂uJ−1
= V ∗.

The Monte Carlo versions of sJ−1 and pJ−1 are

S∗
J−1 =

J−1
∑

j=1

(U∗
j )−θ − (J − 1) and P ∗

J−1 =
J−1
∏

j=1

{(U∗
j )1+θ/(1 + (j − 1)θ)},

and the equation for U ∗
J becomes

{(U∗
J )−θ + S∗

J−1}−(1/θ+J−1)/P ∗
J−1 = V ∗

with solution

U∗
J = {(P ∗

J−1V
∗)−θ/{1+θ(J−1)} − S∗

J−1}−1/θ.

This is how the J ’th uniform is generated from the J − 1 preceding ones. Algorithm 6.5 makes use
of this procedure for J = 2, 3, . . . updating the auxilliary quantities S∗

J−1 and P ∗
J−1 recursively as

we go along.

1.9 Further reading

1.10 Exercises

Section 6.2
Exercise 6.2.1 The following experiment illustrates the concept of conditional distributions. Let aj =
−0.5 + j/10, for j = 0, 1, . . . , 10. a) Simulate (X∗

1i, X
∗
2i) for i = 1, . . . , 10000 from the bivariate normal

with ξ1 = ξ2 = 5%, σ1 = σ2 = 25% and ρ = 0.5. b) For j = 1, 2, . . . , 9, select those pairs for which
aj−1 < X∗

1i ≤ aj and compute their mean ξ|j and standard deviation σ|j . c) Plot ξ|j and σ|j against the
mid-points (aj−1 + aj)/2, and interprete the plots in terms of the conditional density function (1.3). d)
repeat a), b) and c) with ρ = 0.9 and comment on how the plot changes.

Exercise 6.2.2 Consider a time series {Xk} of random variables such that the conditional distribution
of Xk given all preceding ones are normal with

E(Xk|xk−1, xk−2, . . .) = xk−1 + ξ and sd(Xk|xk−1, xk−2, . . .) = σ.
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Which of the times series models in Chapter 5 is this? see also Exercise 6.5.1.

Exercise 6.2.3 Let Z be a positive random variable and suppose X given Z = z is normal with

E(X|z)) = ξ and sd(X |z) = σ0

√
z.

Which model from Chapter 2 is this?

Exercise 6.2.4 Let the survival probabiltities be those used in Section 3.4.; i.e.

log(1pl) = −0.0009− 0.0000462 exp(0.090767× l).

a ) For l = 40 and l = 70 years, compute kpl as given in (1.6) and plot them as a function of k for
k = 1, 2, . . . , 30.

Exercise 6.2.5 Let N be an integer-valued random variable. a) Show that

∞
∑

n=1

Pr(N ≥ n) =

∞
∑

n=1

∞
∑

k=n

Pr(N = k) =

∞
∑

k=1

k
∑

n=1

Pr(N = k) =

∞
∑

k=1

kPr(N = k)

so that

E(N) =

∞
∑

n=1

Pr(N ≥ n).

Let Nl be the remaining length of life for somebody having reached l years. b) Use a) to establish that

E(Nl) =

∞
∑

k=1

kpl.

Exercise 6.2.6 Let X be an exponentially distributed random variable with density function f(x) =
β−1 exp(−x/β) for x > 0. Show that in (1.8) fa(y) = f(y).

Exercise 6.2.7 Suppose that f(x) = β−1α/(1 + x/β)1+α for x > 0 (this is the Pareto density). a) Show
that

fa(y) =
α/(a + β)

{1 + y/(a + β)}1+α
if fa(y) =

α/β

(1 + y/β)1+α

b) Interprete this result; i.,e what is the over-threshold distribution if the parent model is Pareto?

Exercise 6.2.8 A simple (but much less used) alternative to the gamma model to describe variation in
the claim intensity µ is the log-normal. The model for portfolio claims then reads

N|µ ∼ Poisson(JµT ) µ = ξ exp(−1

2
σ2 + σε), ε ∼ N(0, 1).

a) Show that

E(µ) = ξ and sd(µ) = ξ
√

exp(σ2)− 1

b) Determine σ so that sd(µ) = 0.1 × ξ. c) Run and plot simulations of N similar to those in Figure 6.2,
using ξ = 5% and σ as you determined it in b). Take both J = 104 and J = 106 as portfolio size. d) Any
conclusions that differ from those connected to Figure 6.2 in the text?

28



Section 6.3
Exercise 6.3.1 Suppose claim frequency N ∼Poisson(JµT ). Show that the formulas (1.15) for mean and
variance of the total claim X nowx become

E(X ) = JµTξz and sd(X ) =
√

JµT (ξ2
z + σ2

z).

Exercise 6.3.2 Suppose claim intensities µ vary independently from one policy holder to another so that

sd(X ) =
√

Jξµ(σ2
z + ξ2

z)×
√

1 + δ where δ =
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
;

see (1.19) and (1.20). a) Show that δ ≤ σ2
µ/ξµ. b) Argue that the case ξµ = 5% and σµ = 5% would exhibit

huge variability in claim intensity. c) Use a) to show that
√

1 + δ ≤ 1.023 under the specification in b) and
argue that the added portfolio risk due to the hetereogenity in µ accounts for no more than 2.3% of the total
value of sd(X ). This strongly suggests that at portfolio level the impact of risk hetereogenity usually can be
ignored. The next exercise treats a related case where the conclusion is very different.

Exercise 6.3.3 As in Exercise 6.3.2 assume that µ varies randomly, but now as a common parameter
for all policy holders. a) Go back to (1.19) and explain why the factor

√
1 + Jδ =

√

1 + J
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
;

accounts fot the effect of the µ-variablity on sd(§). b) Compute it when

ξ = 5%, σµ = 1%,
σz

ξz
= 0.5 J = 100000.

Any comments? c) Show that the factor
√

1 + Jδ increases with the ratio σz/ξz . Is the impact of µ-variability
larger or smaller for heavy-tailed claim size distributions than for lighter ones?

Exercise 6.3.4 Suppose that X1, . . . , XJ are conditionally independent and identically distributed given a
common factor ω. a) Explain that (1.16) now becomes

E(X ) = JE{ξ(ω)} and sd(X ) = J
√

var{ξ(ω)}+ E(σ2(ω)}/J,

where ξ(ω) and sd(ω) are the conditional mean and standard deviation. b) Show that

sd(X )

E(X )
→ sd{ξ(ω)}

E{ξ(ω)} as J →∞.

c) What this tell you about risk diversification models with common factors? This result throws light on
the conclusion in Exercise 6.3.3

Exercise 6.3.5 Let N ∗ be a simulation of a Poisson claim frequency N where the intensity µ has been
estimated as µ̂. If T = 1, this means that N ∗|µ̂ is Poisson(Jµ̂). a) Use the double rules to prove that

E(N ∗) = JE(µ̂) and var(N ∗) = JE(µ̂) + J2var(µ̂).

b) Recall that E(N ) = var(N ) for a Poisson variable N whereas E(N ∗) < var(N ∗). What causes the
difference? Integration of random error from different sources is discussed in Chapter 7.

Exercise 6.3.6 Suppose X∗ ∼ N(ξ̂, σ̂) where ξ̂ and σ̂ are estimates of ξ and σ from historical data.
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This should be interpreted as X∗ having a conditional distribution given the estimates. a) Argue, using the
double rules, that

E(X∗) = E(ξ̂) and var(X∗) = E(σ̂2) + var(ξ̂)

b) Suppose that var(ξ̂) = σ2/n and that E(σ̂2) = σ2 (which you recognize as a standard situation with n
historical observations). Show that

var(X∗) = σ2(1 +
1

n
).

Exercise 6.3.7 The double rule for variances can be extended to a version for covariances. Let

ξ1(x) = E(Y1|x), ξ2(x) = E(Y2|x) and σ12(x) = cov(Y1, Y2)|x)

for random variables Y1, Y2 conditioned on X = x. Then

cov(Y1, Y2) = cov{ξ2(X), ξ1(X)}+ E{σ12(X)};

see Appendix A. Use this to find the covariances bewteen returns R1 and R2 satisfying the stochastic volatility
model in Section 2.4; i.e

R1 = ξ1 + σ01

√
Zε1 and R2 = ξ2 + σ02

√
Zε2

where ε1, ε2 and Z are independent and the two former are N(0, 1) with correlation ρ.

Section 6.4
Exercise 6.4.1 Let X1 and X2 be dependent normal variables with expectations ξ1 and ξ2, standard devi-
ations σ1 and σ2 and correlation ρ. a) Use (1.3) to justify that

X̂2 = ξ2 + ρσ2
x1 − ξ1

σ1
for X1 = x1

is the most accurate prediction of X2 if X1 is observed. b) Show that

sd(X̂2|x1)

sd(X2)
=
√

1− ρ2.

c) By how much is the uncertainty in X2 reduced by knowing X1 if ρ = 0.3, 0.7 and 0.9? Argue that ρ
should from this viewpoint be interpreted through ρ2, as claimed in Section 5.2.

Exercise 6.4.2 Claim intensities µ in automobile insurance depends on factors such as age and sex. Con-
sider a female driver of age x. A standard way to formulate the link between x and µ goes through the
conditional mean E(N |x), where N is claim frequency. One possibility is

µ = µ0e
−β(x−x0),

where x0 is the starting age for drivers and µ0 and β0 are parameters. a) What is the meraning of the
parameters µ0 and β? b) Determine them so that µ = 10% at age 18 and 5% at age 60 and plot the
relationship between x and µ. In practice a more complex relationship is often used; see Chapter 8.

Exercise 6.4.3 Let

ξ = 5%, a = 0.5 σ = 0.016, r0 = 2%
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in the Vasicĕk model for interest rates. a) Write down predictions for the rate of interest rk at k = 1, 2, 5
and k = 10 years, using (??). b) What is standard standard deviation of the prediction error? Use (??) and
compare the assessment for k = 1 and k = 5 with those in Section 6.4 coming from a related (but different)
set of parameters.

Exercise 6.4.4 Conside the Black-Karisisnski model defined in Section 5.7 under which

rk = ξ exp(−1

2
σ2

x + Xk) where σx =
σ√

1− a2
, Xk = aXk−1 + σεk.

Here ε1, ε2, . . . are all independent and N(0, 1). a) If r0 is the current rate of interest observed in the market,
aregue that

r̂k = ξ exp(−1

2
σ2

x + akx0) where x0 = log

(

r0

ξ
+

1

2
σ2

x

)

is a prediction of the future rate rk. b) Make the prediction for k = 1, 2, 5 and k = 10 years as in the
preceding exercise and use the same parameters as there. Compare forecasts under the two models. This
example will be examined further in Exercise 7.?.

Exercise 6.4.5 Algorithm 6.1 dealt with the forward rate of interest under the Vasiceĕk model. a) Modify
it so that it applies to the Black-Karisisnksi model [Hint: You replace Line 3 with parts of Algorithm 5.4.].
b) ???

Section 6.5
Exercise 6.5.1 Suppose the time series {Xk} is a Gaussian Markov process for which

Xk|Xk−1 = x ∼ N(ax, σ).

Which model from Chapter 5 is this?

Exercise 6.5.2 Suppose X1, . . . , XJ are conditionally normal given Z = z with expectations ξi and vari-
ance/covariances σijz. a) Which model from earlier chapters is this? b) Do the correlations depend on z?
Which model from Chapter 5 is this?

Exercise 6.5.3 Consider Algorithm 6.2, the skeleton for Markov sampling. a) Modify it to deal with
common factors; i.e explain that X∗

k on Line 3 now is drawn from f(xk|X∗
1 .

Exercise 6.5.4 This exercise shows how a stochastic volatiltiy model for log-returns are sampled by means
of the preceding exercise. Suppose

Z = exp(−1

2
τ2 + τε), ε ∼ N(0, 1)

is log-normal and that

X1 = log(1 + R1), X2 = log(1 + R2), X3 = log(1 + R3)

are conditionally normal with expectations ξ1, ξ2, ξ3, volatilities σ01sqrtz, σ02
√

z, σ03
√

z and correlations ρij .
a) Explain how the log-returns are samples. b) Carry out the sampling 1000 times when

ξ1 = ξ2 = ξ3 = 5%, σ01 = σ02 = σ03 = 0.2, all ρij = 0.5 and τ = 0.5.

c) Use b) to compute the 5% lower percentile of the portfolio with equal weights on the three risky assets.
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Exercise 6.5.5 Stochastic volatility in finance is in reality a dynamic phenomenon where the random
variable Z = Zk being responsible are correlated in time. The first model proposed to deal with this is
known as ARCH8 and can be formulated as follows:

Rk = ξ + σ0

√
Zkεk where Zk =

√

1 + θ(Rk−1 − ξ)2

where ε1, ε2, . . . are independent and N(0, 1). a) Argue that returns deviating strongly from the mean ξ
makes volatility go up next time. b) Why is this a Markov model for the series {Rk}? c) Simulate the
model and plot the against time k for k = 1, . . . , 30 when

ξ = 5%, , σ0 = 0.2 and θ = 0.2 starting at R0 = 5%.

These are annual parameters. Plot ten different scenarios.

Exercise 6.5.6 An alternative to ARCH of the preceding is to use the Black-Karisinski model from Section
5.7 for {Zk}, i.e to take

Zk = exp(−1

2
τ2
y + τyYk) where τy =

τ√
1− a2

, Yk = aYk−1 + τηk .

Here both sequences η1, η2 . . . and ε1, ε2, . . . are independent N(0, 1) and independent from each other. a)
Simulate and plot ten realisations of this model under the same conditions as in the previous exercise using
a = 0.6 and τ = 0.1. b) Is there in behaviour a principal difference form the ARCH model. This model
type, though less used than the former (and, especially its extensions) is drawing much interest as this book
is being written (2004).

Exercise 6.5.7 The multinomial model illustrates the factorization (1.27). Start by noting that N0 ∼Binomial(n, q0).
a) Then argue that

N1|n0 ∼ Binomial(n− n0, q̃1) where q̃1 =
q1

1− q0
.

[Hint: From n trials originally, subtract those (= n0) with no delay. Among the remaining n− n0 trials the
likelihood is q̃1 for delay exactly one year.]. Suppose a binomual sampling procedure is available. b) Justify
that (N0, N1) can be sampled through

N∗
0 ∼ Binomial(n, q0) and N∗

1 ∼ Binomial(n−N∗
0 , q̃1)

The next step is

N∗
2 |n0, n1 ∼ Binomial(n− n0 − n1, q̃2) where q̃2) =

q2

1− q0 − q1
.

c) Explain why the general case can be run as follows:

Algorithm 6.6 Multinomial sampling
0 Input n and q0, . . . , qK

1 S∗ ← 0, d← 1
2 For k = 1, . . . , K − 1 do
3 Draw N∗

k ∼Binomial(n− S∗, p∗k/d)
4 S∗ ← S∗ + N∗

k , d← d− pk

5 Return N∗
1 , . . . , N∗

K−1 and N∗
K ← n− S∗.

8ARCH stands for autoregressive, conditional, hetereochedastic.
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This is inefficient for large K, but tolerable for delay. d) Run the algorithm 10000 times when

K = 4, q0 = 0.1, q1 = 0.3 q2 = 0.25, q3 = 0.2, q4 = 0.15.

and compare relative frequencies with the underlying probabiltites.

Exercise 6.5.8 We know from the preceding exercise that

Pr(N0 = n0) =
n!

n0!(n− n0)!
qn0

0 (1− q0)
n−n0

and that

Pr(N1 = n1|n0) =
(n− n0)!

n1!(n− n0 − n1)!
q̃n1

1 (1− q̃1)
n−n0−n1 .

Multiply the two probabilities together and verify that

Pr(N0 = n0, N1 = n1) =
n!

n0!n1!(n− n0 − n1)!
qn0

0 qn1

1 (1− q0 − q1)
n−n0−n1 .

This is the multinomial density function (1.32) for K = 2 (note that N2 = n − n0 − n1 is fixed by the two
first). The general case is established by continuing in this way.

Section 6.6
Exercise 6.6.1 Consider a Markov chain {Ck} running over the three states “active”, “disabled” and ”dead”
with pa|d and pa|d as probabilities of going from “disabled” to “active” and “active” to “disabled” and with
probability of survival 1pl at age l. a) Argue, using conditioning, that the probability at age l of remaining
active must be 1pl(1− pa|d). b) Fill out the rest of the table of transition probabilities at page ?, using the
same reasoning. c) Verify that the row sums are equal to one. d) What does the matrix become when

log(1pl) = −0.0009− 0.0000462 exp(0.090767× l), pd|a = 0.7%, pa|d = 0.35% ?

Exercise 6.6.2 Let the three states of the preceding exercise be labeled 0 (for “active”), 1 (“disabled”) and
2 (“dead”) and let pl(i|j) be their transition probabiltites at age l. a) Implement Algorithm 6.2 for the
model of the preceding exercise. For example, argue that the following recursive step can be used on Line 3:

Draw U∗ ∼ uniform and l← l + 1
If U∗ < pl(0|C∗

k−1) then C∗
k ← 0

else if U∗ < pl(0|C∗
k−1) + pl(2|C∗

k−1) then C∗
k ← 1

else C∗
k ← 2 and stop.

b) Run the algorithm ten times with the model of Exercise 6.1, each time starting at age l = 30 years
and plotting the the simulated scenarios 50 years ahead. c) Change the model unrealistically!) to pd|a = 0.4
and pa|d = 0.20, re-compute the transitiom matrix and re-run the simualtions to see different patterns.

Exercise 6.6.3 The expected remaining life-time at age l was derived an Exercise 6.2.5 as

E(Nl) =
∞
∑

k=1

kpl where kpl = 1pl+k−1 × · · · × 1pl

Consider the recursion

P ← 1pl × P, E ← E + P, l← l + 1
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starting at P = 1, E = 0. a) Argue that it yields E = E(Nl) at the end. b) Implement the recursion,
compute E(Nl) for l = 20, 25, 30, . . . up to l = 70 for the survival model in Exercise 6.6.1. c) Plot the
computed sequence against l and explain why it is decreasing.

Exercise 6.6.4 One of the issues with potentially huge impact on the business of life and pension in-
surance is the fact that in most countries length of life is steadily prolonged. Suppose we want to change
our current survival model into a related one in order to get a rough picture of the economic consequences.
A simple way is to introduce

1p̃l =
θ1pl

θ1pl + (1− 1pl)
,

where θ is a parameter. a) Show that the new survival probability 1p̃l decreases with age l if the original
model had that property. b) Also show that it increases with θ and coincides with the old one if θ = 1. c)
Let 1pl be the model of Exercise 6.6.1. Use the program of Exercise 6.6.3 to compute the average, remaining
length of life for a twenty-year for θ = 1.0, 1.1, 1.2, . . . up to θ = 2 and plot the relationship. d) Use the plot
to find out roughly how large θ must be for the average age to be five years more than it was.

Exercise 6.6.5 Consider a policy holder entering a pension scheme at time k = 0 at age l0 and mak-
ing a contribution (premium) at the start of each period. From age lr he draws benefit ζ (also at the start
of each period) which lasts until the end of his life. There is a fixed rate of interest r. Let Vk be the value
of his account after time k. a) Argue that as long as the member stays alive, his account develops according
to the recursion

Vk = (1 + r)Vk−1 + π, k < lr − l0
= (1 + r)Vk−1 − ζ, k ≥ lr − l0

starting at V0 = π.

a) Write a program that allows the account to build up and then decline, the scheme terminating upon
death. b) Simulate and plot the movements of the account against time when

l0 = 30, lr = 65, π =? ζ =? r = 3%

and the survival model is the one in Exercise 6.6.1. c) Repeat b) nine times to judge variability. d) If you
apply the program ?? on ?? under the Cambrige website you can see how much the status of the account
varies when the scheme stops at the death of the policy holder. The plot is based on 10000 simulations under
the conditions above.

Section 6.7
Exercise 6.7.1 a) Show that when U1 is uniform and U2 = U1, then

Hma(u1, u2) = min(u1, u2), 0 ≤ u1, u2 ≤ 1.

is the copula for the pair (U1, U2). b) Prove the first half of the Frechet-Hoeffding inequality; i.e.

H(u1, u2) ≤ min(u1, u2), 0 ≤ u1, u2 ≤ 1.

for an arbitrary copula H(u1, u2). This shows that Hma(u1, u2) is a maximum copula.

Exercise 6.7.2 The second half of the Frechet-Hoeffding inequality apply to antitetic variables, introduced
in Chapter 4 to produce negatively correlated random variables. Let U1 be uniform and U2 = 1 − U1. a)
Show that the copula is

Hmi(u1, u2) = max(u1 + u2 − 1, 0),
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For an arbitrary copula H(u1, u2) fix u2 and define the function

G(u1) = H(u1, u2)− (u1 + u2 − 1).

b) Show that G(1) = 0 and that G′(u1) < 0 [Hint: Recall (1.40).]. c) Explain that this means that G(u1) > 0
so that

H(u1, u2) ≥ max(u1 + u2 − 1, 0),

and the antitetic pair defines a minimum copula.

Exercise 6.7.3 We might use the the preceding two exercises used to check whether a family of copu-
las capture the entire range of dependency. a) Show that the Clayton copula (1.39) coincides with the
minimum (antitetic) copula when θ = −1 and b) that it converges to the maximum copula as θ →∞ [Hint:
Utilize that the Clayton copula for θ > 0 may be written

exp{L(θ)} where L(θ) = log(u−θ
1 + u−θ

2 − 1)/θ

and apply l’Hôpital’s rule to L(θ).].

Exercise 6.7.4 Show that the Clayton copula (1.37) approaches the independent copula as θ → 0 [Hint:
Use the argument of the preceding exercise.].

Exercise 6.7.5 One of the most popular copula models is the Gumbel family for which

H(u1, u2) = exp{−Q(u1, u2)} where Q(u1, u2) = {(− log u1)
θ + (− log u2)

θ}1/θ.

a) Verify that this is a valid copula when θ ≥ 1 by checking (1.35). b) Which model corresponds to the
special case θ = 1? c) Which model appears as θ →∞? [Hint: One way is to utilize that

Q(u1, u2) = exp{L(θ)} where L(θ) = log[(− logu1)
θ + (− log u2)

θ]/θ}.
Apply l’Hôpital’s rule to L(θ).]

Exercise 6.7.6 Show that the Gumbel family of the preceding exercise belongs to the Archimedean class
with generator φ(u) = (− log u)θ.

Exercise 6.7.7 Let H(u1, u2) = φ−1{φ((u1) + φ(u2)} be a general Archimedean copula where it is as-
sumed that the generator φ(u) decreases continuously from infinity at u = 0 to zero at u = 1. a) Calculate
H(u1, 0) and H(0, u2) and verify that the first line in (1.35) is satisfied. b) Same question for the second
line and H(u1, 1) and H(1, u2).

Exercise 6.7.8 Consider the Archimedean copula based on the generator φ(u) = (1 − u)3. Derive an
expression H(u1, u2) and b) show that it is zero whenever u2 ≤ {1− (1− u1)

3}1/3.

Exercise 6.7.9 Suppose an Archimedean copula is based on a generator for which φ(0) is finite. Use
the fact that the generator is strictly decreasing to explain that the copula H(u1, u2) is positive if and only
if

φ(u1) + φ(u2) < φ(0) true if and only if u2 > φ−1{φ(0)− φ(u1)},
and the lower bound on u2 is normally positive. We rarely want models with this property.

Exercise 6.7.10 Consider the Clayton copula (1.36) with positive θ with generator φ(u) = (u−θ − 1)/θ.
Show that the key part of Algorithm 6.4 (lines 2 and 3) is solved by

U∗
2 = {1 + (U∗

1 )−θ[(V ∗)−θ/(1+θ) − 1]}−1/θ.
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