1 Modelling claim frequency

1.1 Introduction

Actuarial modelling in property insurance may be broken down on claim size (next chapter) and
claim frequency (treated here). The Poisson distribution is the central model of the chapter. Its
parameter is A = pT" (for single policies) and A = JuT (for portfolios), where J is the number of
policies, T' the time of exposure and y claim intensity; see Section 3.2. These probabilistic descrip-
tions rest on the Poisson point process presented in the next section. This construction provides
a strong theoretical basis and enables us to explore the meaning of 4 and how it comes about that
the same familiy of distributions is used at both policy and portfolio level. It also indicates how
the default Poisson model should be extended to cover different forms of risk hetereogeneity.

The issue of indvidual risk was raised in Chapter 3, but the discussion will now be taken much
further. Omne approach is through random intensities. Each policy holder j is then assigned an
intensity p; through a drawing from some probabiltity distribution. This viewpoint leads to the
theory of credibility in Chapter 10. Another way is to link yx; to explanatory variables. An
example is automobile insurance where (for instance) age and sex of the drivers typically influence
accident frequency. The method to use is Poisson regression presented in Section 8.4. But vari-
ations in risk may also have to do with time. One feature is seasonal effects due to climate and
other things, but there are also systematic trends upwards or downwards (see Figure 8.1). Such
phenomena make certain periods collectively more risky than others with an effect on portfolio risk
that is very different from hetereogeneity at individual level. A time effect of a different kind is
delays (up to decades) from the insured incidence to the actual compensation. That is treated at
the end.

1.2 The Poisson point process

Introduction

The Poisson point process provides the genesis for most models of claim size used in practice, and
its construction is the natural way to elucidate the meaning of the key parameter u. Start from
the obvious fact that accidents and incidents occur suddenly and unexpectedly and may take place
at any point in time. The mathematical formulation is based on cutting the interval from ¢y = 0
to the end of period tx = T into K pieces of equal length

h=T/K (1.1)

so that tx = kh (k =0,1... K) are the changepoints; see the following display:
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Eventually the time increment h will approach 0 (making the number K of periods infinite), but
to begin with these quantities are kept fixed.



Let Ij (for single policies) or Zj (for portfolios) be the number of claims in the k’th interval
from t;_1 to t. The sums

N:_[1+IQ++IK and N211+IQ++IK

single policy an entire portfolio

(1.2)

are then the total number of claims up 7T. Their probability distributions are needed for most
evaluations of risk in property insurance. What they are will in this section be deduced through a
theoretical argument.

Modelling single policies

It is overwhelmingly likely that no claims is received from a policy holder during a single, short
time increment h, and the risk of more than one claim is remote. Let us go to the extreme and
assume that each I is either 0 or 1 (hence the symbol I, signifying an indicator variable). These
assumptions will be relaxed later without this changing anything substantial. But for now a se-
quence of indicator variables {Ij} is called a time-homogeneous Poisson point process if

(i) p=Pr(Ixy =1) = ph and (ii) Ih,... Ik are stochastically independent.

Formally the definition applies in the limit as A — 0; see below. There is a sensible rationale
behind both assumptions. Surely an insurance incident occurs with probability proportional to
the time increment h. The coefficient of proportionality y is an intensity and defines the risk
of the individual. Independence is also plausible. Typically accidents are consequences of forces,
behaviour or events that bear no relationship to each other. An incident that has occurred simply
makes further incidents in the aftermatch neither more nor less probable. There may be violations
to this, but they are usually better handled by allowing the intensity u to vary with time, see below.

The assumptions make {Iy} a Bernoulli series and their sum N a binomially distributed ran-
dom variable. This chance experiment is about the first you are taught in courses in probability
and statistics; look it up in any elementary textbook if you are unfamiliar with it. The probability
distribution for N is then (n =0,1,...,K)

K! n —-n
Pr(N =n)= mp (1-p)E—, where p=ph =pT/K.

It is easy to verify that the expression for Pr(N = n) may be rewritten
PI‘(N:’IL):Bl XBQXB3XB4

where
()"
n!

B = (1-uT/K)X, By =

K(K—-1)-(K-n+1)
Kn

) By =

L
(1= pT/K)™

Simply multiply By, ..., By together to convince yourself that the product equals Pr(N = n).



Let h — 0, or, equivalently, K — oo, keeping n fixed. The first factor B; is unchanged whereas the
others in the limit become

By — 1, B3 — exp(—uT) and By — 1.

The relationship for Bs is a consequence of the fact that (1 + a/K)¥ — exp(a), applied with
a = —uT. By collecting the terms it follows that

T n
Pr(N =n) — Mexp(—uT) as K — oo,
n!

and the limit is the Poisson distribution with parameter A = yT'. The Poisson distribution is the
logical consequence of the Poisson point process and is accurate if the conditions (i) and (ii) are
reasonable descriptions of the reality.

A more general viewpoint

On the portfolio level J independent process based on intensities p1,...,us run in parallel. To-
gether they produce each period k a total number of claims 7, against the portfolio. Its distribution
is derived by noting that

J
= || (1 —p;h) and Pr(Zy, =1) = Z{,uzhH 1 — pj;h)
j=1 i=1 VES
no claims claim poﬁcyi only

Here 1 — hpu; is the probability of no claim from policy j. On the left all of those are multiplied
together for the probability of no claims against the porifolio. The probability of exactly one claim
is a little more complicated. We must add the probabilitites that it is due to the the first, second,
third policy and so on. This yields the expression on the right.

Both probabilities may be simplified by multiplying their products out and identifying the powers
of h. Try to do it for J = 3, and the general structure emerges as

J

Pr(Z; =0)=1- (Z u]> and Pr(Zy =1)=h (Z ,uj> +o(h), (1.3)

=1

where terms of order h? and higher have been ignored and lumped into the o(h) contributions. If
you are unfamiliar with that notation, it signifies a mathematical expression for which

o(h)
h

These small quantities do not count in the limit as h — 0. A mathematical proof is given in Section
8.7.

-0 as h — 0.

It follows that the portfolio sequence Zi,...,Zx has the same type of probabilistic description
as their analogue I, ..., [k for policies. The only difference is that the former intensity y now has



become the sum p; + ...+ py. Note that we could have started with a construction that allows
these small o(h) terms. The earlier definition is then replaced by

Pr(Iy =0) =1 — ph + o(h), Pr(Iy = 1) = ph + o(h), Pr(I; > 1) = o(h).

Again, what happens in the limit as » — 0 doesn’t change, and (1.3) appears as a consequence.
This less rigid formulation is a more satisfactory one from a theoretical point of view.

Summary of conclusions

The preceding argument has established several useful results. Under the Poisson point process
claim frequencies N (policy level) and N (for portfolios) are both Poisson distributed. Their pa-
rameters are

A=uT and A=(p1+...+p))T =JuT
policies portfolios

where i = (u1+...+uy)/J is the average intensity over all policy holders. It doesn’t for N matter
that p1,...,us vary over the portfolio; we simply insert their average. That seems tidy and easy,
and yet isn’t the entire story as new effects emerge when the intensities are randomly drawn; see
Section 8.5 below.

An alternative way of stating the conclusion is to start with J independent Poisson variables
Ni,...,N; with parameters A1,...,As. Their sum ' = Ny + ... + Ny is then Poisson too; the
parameter being A1 + ...+ Aj.

Hetereogeneity over time

In practice claim intensities often fluctuate over time. An example is shown in Figure 8.1 where
monthly accident frequencies for automobiles are plotted. The data comes from a Norwegian insur-
ance company and have been converted into estimated intensities on monthly time scale through
the method introduced in Section 8.3. One feature is that claim frequency seems to rise over the
period in question, perhaps by about 0.1% monthly (or 1.2% annually). There are also systematic
variations due to the season of the year. In cold countries (like Norway) a main cause is slippery
roads during winter; elsewhere it could be strong winds or torrents of rain during the stormy season.
Peaks in summer (when people drive a lot) is still another example. Are such time factors relevant
for actuarial calculations? Systematic trends upwards surely must be, but for seasonal effects the
first answer is negative. Calulations are usually annual which means that variations over the year
average out and can be ignored.

To analyse what goes on introduce y = u; as an intensity fluctuating in time. We may envisage
i+ as a continuous function which can be approximated by a step function on the K sub-intervals
defining the Poisson process. This means that u = u; applies between t;_1 and g, and the number
of claims I, for this period must be Poisson with parameter pugh. Hence N = I1 + ... + Ig is
Poisson too. Its parameter is

K T
A= Zhuk — / e dt as h — 0.
k=1 0
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Figure 8.1. Estimated monthly claim intensities for data from a Norwegian insurance company

The limit is simply how integrals are defined. In other words we have proved that the Poisson
parameter for N has become

1 T
A=Tp where i = T/ e dt. (1.4)
0

Here ji, the time average of u;, takes over from the former constant p. It in this sense time variations
over the year can be ignored.

1.3 The Poisson model

Introduction

The preceding section established the Poisson distribution, introduced in Section 2.6, as the default
model for claim frequencies. Mean, standard deviation, skewness and kurtosis for a Poisson variable
with parameter A\ are

E(N) = A, sd(N) =V,
skew(N) = 1/V/X, kurt(N) = 1/A.

Note that variance and mean are equal; i.e. var(N) = E(N) which is often used for a quick ap-
praisal from the historical data Ny,..., N,. If their average and variance do not deviate too much,
the Poisson model becomes a strong contender.

The important property that sums of independent Poisson variables are Poisson distributed them-
selves was pointed out in the preceding section. It has the interesting consequence that N becomes
normally distributed as A — oo (Exercise 8.3.1). There are clear signs of this in Figure 8.2 where
the probability function has been plotted for two values of A. The skewness to the right when A = 4
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Figure 8.2 Poisson density functions for A =4 (left) and A = 20 (right).

has largely disappeared at A = 20, the shape now being approximately symmetrical.

Fitting
Let nq,...,ny, be the number of claims from n policies with common intensity y. Suppose they
have been under exposure 711, ...,T;,. The standard estimate of u is then
. n+...+n,
== 1.5
F=ry T, (1.5)
This is a likelihood method. It is unbiased, i.e. E(ji) = p and the standard deviation is
. I
sd(ji) =/ =————— 1.6
() T +.. +1T, (1.6)

see Exercise 8.3.2. Estimation error is determined by the size n of the historical record and the
exposure to risk. The sum T + ... + T, is the number of automobile years behind the estimate.

Sometimes claims are recorded on an annual basis. Each T} is then either one or some fraction of
a year (if the policy wasn’t there the entire year). The same policy will then occur several times
in the data record. That doesn’t matter here (and neither in the next section), but for the models
with random intensities later in this chapter, it does matter. In such situations each individual
must be recorded a single time only. Of course, isn’t necessary that a client has remained with
the company. The experience with former ones are relevant too. How far back we should look is a
matter of practical judgement.

Numerical example
Poisson modelling will be illustrated on the Norwegian automobile portfolio in Figure 8.1. The
number of claims where 6555 over 115000 automobile years which yield the estimate

6555 0.057
I = = 5. ith estimated sd = (.
A= 15000 5.7% with estimated s \/115000 0.07%,




Rates in % annually

Age groups (years)
20-25 26-39 40-55 56-70 71-94
Males  10.5 (0.76) 6.0 (0.27) 5.8 (0.13) 4.7 (0.15) 5.1 (0.22)
Females 8.4 (1.12) 6.3 (0.28) 5.7 (0.23) 5.4 (0.28) 5.8 (0.41)

Table 8.1 Estimated, annual accident rates (standard error in paranthesis)

where the accuracy is less than it appears; see Section 10.3 where a trap is elucidated. About
one car in twenty causes accidents each year, but underneath this average value there must be
considerable variations from one individual to another. The annual intensity estimates have in
Table 8.1 been broken down on male/female and five age categories. This is known as a cross-
classification between the two variables and leads to 2 x 5 = 10 sub-groups to which the earlier
estimation method could be applied. The analysis has ignored other explanatory variables (such
as how much people drive) in order to keep things simple. Let us nevertheless see what we can learn.

There is a strong age effect. Accidents rates go consistently down as people gain in experience.
(people over 70 being an exception). In the youngest group (20—25) men cause distinctly more
incidents than women. Could the difference of 2.1% be due to chance? The estimated standard
error of the difference is from the table

(0.76% +1.12%)1/2 = 1.35,

and the ratio 2.1/1.35 = 1.5 could be compared against a normal distribution. In economics that
is known as the Wald test. Here 1.5 is close to being statistical significant at the 5% level which
might lead us to the position that it is ‘fair’ to charge young women less that young men. A dif-
ference of about 25% would not be unreasonable since 10.5/8.4 = 1.25!. The advantage of women
disappears with age, and they are more and not less risky in the highest age groups.

How Poisson variables are sampled

The method of choice depends on the circumstances. If we are dealing the aggregated claim against
a portfolio, computing time will be dominated by time spent on claim size. With m simulations,
there will be about mE(N) claim size drawings against only m of N. This suggests that the speed
of the Poisson sampler does not matter too much. Often the simple and elementary Algorithm
2.10 is good enough. This applies equally with the mixture models capturing risk hetereogeneity
in later sections of this chapter.

If speed is critical, we might fall back on the methods of guide tables in Section 4.2, but this
approach is useless with mixture models (because the time-consuming set-up phase has to be re-
done many times). The problem with Algorithm 2.10 is that it slows down for large values of A,
but under such circumstances we may turn to the method of Atkinson (1979):

Algorithm 8.1 Atkinson’s Poisson generator

'In Norway, with its stern laws on equal treatment of sexes, such differentiated pricing isn’t legal! (charg-
ing unequally according to age is all right!).



0 Input: ¢+ 0.767 — 3.36/\, a <+ ©w/V3\, b+ Aa, d< log(c/a)—A

1 Repeat

2 Repeat

3 Draw U* ~ uniform and X* < {b—1log(1/U* —1)}/a
until X* > —0.5

4 N* + [X*+0.5] and draw U* ~ uniform

5 If b — aX* —log{{1 +exp(b— aX*)}2/U*} < d+ N*log()\) — log(N*!)
stop and return N*

Before running the algorithm it is necessary compute (recursively!) and store the sequence log(n!)
up to some number the Poisson variable has microsopic chances to exceed (5\ could be a sensi-
ble choice). The method is derived through rejection sampling; see Cassela and Robert (1998).
Atkinson recommends that A > 30 for his procedure to be used. Devroye (1986) contains other
possibilities.

1.4 Poisson regression

Introduction

The automobile example in Table 8.1 is a special case of the important problem of linking varia-
tions in risk to explanatory variables. Insurance companies run such studies to understand which
customers are profitable and which are not and to charge differently in different segments of the
portfolio. Some will say the latter contradicts the the principle of solidarity which lies behind the
very idea of insurance itself. Whatever the merit of this view there has through the last decades
certainely been a growing trend towards individual pricing. It can be little doubt that the modern
actuary must understand and master the techniques involved.

Credibility theory is one of the answers provided by actuarial science, but this historically im-
portant method has a scope somewhat different from the present one and is treated in Chapter 10.
The issue now is the relevance of observable variables such as age and sex of drivers, geographical
location of a house and so forth. In the preceding section the portfolio was partitioned into groups
of policy holders, and the estimate (1.5) applied separately to each group. Although there are many
situations where this is a sensible approach, its range of applications is too restrictive for the method
to be the single one. One reason is that there might be too many groups. Take the automobile
example in Section 8.3. Among relevant factors neglected are the amount of driving?, geographical
region and the type of car. If these variables are classified into categories and cross-classified with
sex and age, there can easily be 1000 different categories or more. This would require huge amount
of data for estimation. Another problem is that we need an approach that can handle numerical
variables, not only categorical ones.

The model
The approach most widely used in practice is that of Poisson regression where the claim intensity

2The companies do not know that, but they have a prozy, in the annual distance limit on policies.



1 is ‘explained’ by a set of observable variables z1, ..., z, through a relationship of the form

log(p) = by + b1z1 + ... + byzy. (1.7)
Here b1,...,b, are coefficients that are to be determined from historical records. When that has
been accomplished, the link between p and the explanatory variables z1,...,z, (also called co-

variates) allows us to discriminate customers according to the risk they represent.

Why is log(u) used in (1.7) and not p itself? It will emerge below that it does lead to a useful
interpretation of the model, but the most compelling reason is almost philosophical. Linear func-
tions, as those on the right, extend over the whole real line whereas u is always positive. It does
not really make sense to equate two quantites differing so widely in range, and a log-transformation
arguably makes the scales more in line with each other.

Data and likelihood function
Historical data will be of the following form:

n1 T T11 " Ty
N9 T To1 "+ Tw
Np Tn Tnl Ty

Claims exposure covariates

On row j we have the number of claims n;, the exposure to risk 7; and the values of the ex-
planatory variables x;;...xj,. This is known as a data matrix. Many software packages work
from information stored in that way. How specific situations are read into it will be indicated below.

It is assumed that the random variable N; corresponding to n; is Poisson distributed with pa-
rameter \; = T;u;, where

log(pj) = bo +bizji + ... + byzjp. (1.8)
The likelihood function (see Section 7.3) is derived by noting that the probability function of N; is

f(n) = % exp(—Tjpu;)

or

log{f(n;)} = njlog(u;) + n;log(T;) — log(n;!) — Tjpuj,

which is to be added over all j to produce the likelihood function L(bg,...,b,). We may drop
the two middle terms n;T; and log(n;!) (constants in this context). The likelihood criterion then
becomes

L. b) = > {05 log(1s) — Ty (19)



where p; is given in (1.8). The exposure to risk T} is sometimes called the offset.

There is little point in carrying the mathematics further. Together (1.8) and (1.9) define a cri-
terion, the maximimum 130, ey b, of which being the estimates. Optimization is carried out by
commercial software (and you do not have to know how it is done). In fact, it is easy, since it
can be proved (McCullagh and Nelder, 1994) that L(by,...,b,) is a convex surface with a single
maximum. Approximate standard errors are also computed.

Interpretation and coding

The method will applied to the example in Table 8.1 for illustration. Perhaps the most obvious
way of feeding the two explanatory variables age (1) and sex (z2) into the regression model (1.8)
is to write

log(,uj) = by + blle =+ bQ.TjQ.

1.1
age effect male/female (1.10)

Here z1; is the age of the owner of car j and

z2; = 0, if j is male
=1, if j is female.

Suppose owners j and i are of the same age, the former being a male and the other a female. Then
B _ exp(by). Example: by = 0.037 yields % = exp(0.037) = 1.037,
1 H

where the value on bs is taken from Table 8.2 below. According to the estimate an average Norwe-
gain female driver causes 3.7% more accidents than the average male.

The coefficient b in (1.8) is likely to be negative. As drivers become more experienced, so their
accident rate is likely to go down. But log(u) should not nevessarily be a strictly linear function
of age. Indeed, the accident rate could well go up again when people become very old. A more
flexible mathematical formulation is to divide into categories. The ezact age 2 is then replaced by
the age group to which the policy holder belongs. With ¢ such groups (1.8) is changed to

c
log(p45) = bo + Y _ b1 (8)zj1(i) + bozjo, (1.11)
i=2
where for an individual j in age group !

zj(i) =1, ifi=1
zji(i) =0, ifi#L

The age component is now represented by c different binary variables z1(1),...,z;j1(c). For a given
policy holder ezactly one of them is equal to one; the rest are zero. The model specification is in
reality

log () = bo + b1 (1) + bazjo, for policy holder j at age [,

10



Intercept Male Female
-2.315 (0.065) 0 (0) 0.037 (0.027)

Age groups (years)
20-25 26-39 40-55 56-70 71-94
0(0) -0.501 (0.068) -0.541 (0.067) -0.711 (0.070) -0.637 (0.073)

Table 8.2 Fitted Poisson regression (standard deviations in paranthesis)

but (1.11) may be the way the model is entered Poisson regression software.

Does this look contrived? The number of unknown parameters has gone up, and longer records his-
torical data are needed. However, the modelling now permits more complicated (and hence truer)
relationships between age and risk, and the partition into groups may also be the natural way to
avoid excessively many different premia when charging people. Note that b;(1) = 0 in (1.11). A
restriction of that kind is necessary to avoid confounding with the intercept parameter by. Such
conventions vary with the software you are using; more on the interpretation of these coefficients
among the exercises.

Automobile example continued

The automobile data has been fitted in Table 8.2. Note the huge jump from the lowest age group
to the next one, and for the oldest age group claim frequency goes up. Statistical significance can
be evaluated by dividing the estimates (or their differences) on the estimated standard deviations
as explained in Section 8.3. Usually actuaries are not overly concerned with statistical significance.

The estimated coeficients plugged into (1.10) yield estimates for the claim intensities in the various
groups. The results in Table 8.3 follow those in Table 8.1 with the notable exception that the
much higher accident rate for men in the youngest group has disappeared! This is caused by the
model imposed. Since the contributions of age and sex are added on log-scale, the female intensity
is forced to be proportional to the male on ordinary scale, and the fine structure found in Table
8.1 has been lost. Presumably the former version obtained without the additional mathematical
restrictions is closest to the truth. So why bother with the other? That’s because such simplifi-
cations frequently are necessary in practice to reduce the number of parameters. Often there are
many explanatory variables present, as is in this example when all of them are included. Crossing
four or five variables with all others would lead to hundreds or even thousands of different groups
with the same number of parameters that would demand huge amount of data to be fitted.

1.5 Random risk parameters

Introduction

Variation in p over the portfolio was in the preceding section attributed to observable explanatory
variables. But there are also personal factors about which we can not possibly possess detailed
knowledge. In automobile insurance, how are we to know that some drivers are reckless and some
are not, that some have excellent power of concentration while others easily lose theirs. Even
within a group that has been made as homogeneous as possible uncertainty due to such factors

11



Intensities in % annually
Age groups (years)
20-25 26-39 40-55 56-70 71-94
Male 9.9 5.9 5.8 4.9 5.2
Female 10.3 6.1 6.1 5.1 5.4

Table 8.8 Annual claim intensities under Poission regression

will remain. The natural mathematical formulation is to work with a stochastic p, and that has
a second rationale too. All insurance processes run against a background that is itself subject to
random variation. A striking example is driving conditions during winter months that may be
rainy or icy (and perilous) one year and safe and dry the next one. That contributes a random
component too, but now one affecting all policy holders jointly. Much was made of this distinction
between individual and collective hidden randomness in Section 6.3. The basic models were

N|u ~ Poisson(uT) and N|u ~ Poisson(JuT).
policy level portfolio level

Their impact on portfolio risk differed violently, yet their basic methodology is very much the same
and will only be written out for the model version on the left. Modifications required for the other
case are treated among the exercises.

The density function for N is given by the so-called mizing relationship
o0
Pr(N =n) = /0 Pr(N =n|u)g(u) du. (1.12)

Here g(p) is the density function of y. The Gamma family will be used during the second half of
this section, but first two issues that are best discussed at a general level.

Estimation of mean and standard deviation

It is possible to estimate £ = E(u) and o, = sd(p) from historical data without imposing further
conditions on the model. The likelihood method is not available, since g(u) has not been specified,
but moment estimation (Section 7.3) is possible. Suppose policy holder j has reported n; claims
over a period of length Tj for j = 1,...,n. Estimated claim intensities are then

Hj

with mean and variance E(ij|lp;) =p; and  var(iglp;) = T
J

i T
T;
see (1.6). Note that the mean and variance is conditional. By the double rules of Section 6.3

Bli)=¢  and  variy) =0k + o,
J

and the question is how the information in f1, ..., fi, should be pooled. The problem is much the

same as with Anova IT models in biostatistics; see Sokal and Rholf (1973) for a classical treatise.

Their approach is based on assigning each estimate fi; a weight proportional to T;. For the estimate

of ¢ this leads to

T.

J (1.13)

E — wifit + ... + wpfl where wp = —-———
3 1M1 nin ' T +...+1,

12



which is the same as (1.5). It is proved in Section 8.7 that

A A ¢ 1/2
E() =¢ and sd(¢) = (U;QL(“’% oot wn) + T1+—+Tn> ’

and ¢ is unbiased. The error normally vanishes if Ty + ...+ T}, — co. A precise statement requires
an additional (weak) condition on the sequence {7}}.

The estimate for the variance is less intuitive. One possibility, justified in Section 8.7, is

o wi(i —€)? —C —1
2 =1 wj(:u’]n 6)2 where C— (n—1)¢ .

~2
&% = (1.14)
In the numerator C is a correction term that makes the estimate unbiased, but this adjustment
doesn’t guarantee a positive estimate. With negative values take the obvious position that the
variation in u over the portfolio is unlikely to be very important and let 6, = 0. The expression
for sd(67) is complicated and is omitted.

Application to the automobile portfolio described earlier gave

~

£ =5.60% and oy = 2.0%.

That tells us that the variability in claim intensity among the policies is huge. We got the same
message in Section 8.4 from another perspective. The present model would be used for purposes
quite different from those of Poisson regression.

Simulation
Monte Carlo sampling requires a specific model for y (such as the one in the next section). The
commands reflect the model definition:

Algorithm 8.2 Poisson mixing (single policy)
0 Input: Density g(u) for u

1 Draw p* ~ g % Many possibilites
2Fork=1,...,K do
3 Draw N} ~ Poisson (T'p*) % Algorithm 2.10

4 Return N,...,Nj

On output claim frequencies over K different periods of length 7" has been generated. Note that
the intensity p* (linked to the policy), is only generated once. That makes all simulations stochas-
tically dependent, since they originate with the same p*. For J policies Algorithm 8.2 is run J
times. Alternatively when pu is a common factor affecting the entire portfolio, the intensity p* is
only drawn once in the beginning and the loop repeated for all J policies.

The negative binomial model
The most commonly applied model for y is the Gamma family; i.e. taking

u==E&Z where Z ~ Gamma(a). (1.15)

13



This allows p to vary around a mean £, the uncertainty being controlled by «. Specifically

E(p) = ¢, and sd(u) = &/Ves (1.16)

see Section 2.6. Note that the variation in p is now captured by a. Clearly sd(u) — 0 as o — 0.
The pure Poisson case with fized intensity appears in the limit.

One of the reasons for the popularity of this model is without doubt that (1.12) can be evalu-
ated in closed form. The detailed mathematical argument which is shown in Section 8.7, yields
(n=0,1,...)

I'(n+ ) a

o o ar1 _ \n _

Pr(N =n)= Tln+ DT(@) p*(1 —p) where P=oT e (1.17)
This is known as the negative binomial distribution and will be denoted nbin(¢, ).
Properties of the negative binomial
Mean and variance are

E(N)=T¢ and var(N) = T¢{(1 + T¢/ o); (1.18)

see Section 8.7. Unlike pure Poisson models var(N) > E(N), but they become equal in the limit
as a — oo. It had to like that since an infinite « signifies a pure Poisson distribution.

The model has a convolution property which is similar, but less general than for the Poisson
familiy. Suppose Ni,...,N; are independent with common distribution nbin(¢, «). Each N; can
then be represented as

Nj|p; ~ Poisson(u;T) where pi =¢&7Z;, Zj ~ Gamma(a).

H¢=p+...+pyand Z = (Zy +... + Z;)/J, we have for N' = Ny + ... + N; the analogous
representation

N|¢ ~ Poisson(¢T) where ¢=(JEZ, Z ~ Gamma(Ja),

and where Z1,..., Z; are independent. What lies behind this? Firstly that the sum of independent
Poisson variables are Poisson itself, secondly that the new parameter

C=pm+...+us =82 +...+Z) = JtZ

and finally that the average Z is Gamma(Ja); see Section 9.3. But the representation established
for A is the defining one for the negative binomial model, and so N' ~ nbin(J¢, Ja). Note that
sd(N)/E(N) = 1/v/Ja, and random variation is strongly diminished when moving to the portfolio
level. This was also established in Section 6.3 through a more general route.

Fitting the negative binomial
Moment estimation through ¢ and &), in (1.13) and (1.14) is easiest technically. Since £ is the mean,
its estimate is simply (1.13) whereas & is determined by

6, =E/Va which implies a=E/s2.
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We saw above that 6, = 0 is a distinct possibility. When that happens, interprete it as an infinite
& which signals a pure Poisson model.

Likelihood estimates are more accurate in theory, but require more work to implement. To derive
the log likelihood function the obervations n; must be inserted for n in (1.17) and the logarithm
added over all j. This leads to the criterion

L(§,a) = Y _log{T'(n; + @)} — n{log{I'(e)} — alog(a)}

i=1

+ zn:{nj log(§) — (nj + @) log(a + T;¢) }

where constant factors not depending on ¢ and o have been omitted. It takes numerical software
to optimize this function. A primitive way is to compute it over a grid of points (£, @) and select
the maximizing pair. If not available in your software, you will need approximations for log{I'(«)},
see Appendix C.

Automobile example continued

Moment estimates for & and 7 were £ = 5.60% and &, = 2.0%, which leads to & = 0.0562/0.022 =
7.84 as assessment of ¢ in the negative binomial distribution. The likelihood method was applied
as well, and together the two methods gave the following sets of estimates:

~ ~

£ =560%, &="7.84 and £ =5.60%, &=2.94

moment estimates likelihood estimates

For ¢ the results are identical to two decimal places (they are not the same estimate!), but for «
the descrepancy is huge, the likelihood estimate potraying a much more variable claim frequency.
Behind the estimates are about half a million automobile years, so there is no question of the
deviation being accidental. What lies behing and which one is to be trusted? Answer: In a sense
neither! What it tells us is that the Gamma family doesn’t (in this case) provide a good description
of the variability of y. If it had, the estimates would have been much closer together. The moment
estimate is best (because the standard deviation is captured correctly). An example where the
model does fit is given in Exercise 8.5.2.

1.6 Delayed settlements of claims

Introduction

Claims are never settled immediately, and for some types of injuries or damages delay is rather
long. A typical case is back or neck ailments following a car crash; it may take years before their
symptoms arrive. Other examples originate with environmental factors like asbesto or radioactiv-
ity. Their severe effect on health was not understood at the time, and the repercussions for the
insurance industry have been dire indeed. Claims that are only discovered years after the insurable
event took place are called IBNR (incurred, but not reported). Companies have to set aside funds
to cover them (even though they are not yet identified).

The situation may be depicted as follows:

15



Past We are here Future

At the end of year zero (where we are at the moment) there are outstanding claims that will
surface later. They have occurred during periods insured, and companies are responsible. If the
maximum displacement between incident and settlement is K years, we have to look K years back
(to include everything undetected) and also K years ahead (the period our balance sheet will be
affected). This section is concerned with the modelling of claim frequencies of this nature.

The delay model

A natural approach (though not currently the most popular one) is to regard IBNR claims as a
random phenomenon. If D is the number of periods of postponement until a claim is settled, we
may introduce delay probabilities qq, . .., qx through

q =Pr(D=1) for which g+...+gx =1 (1.19)

Their meaning is straightforward; qo, for example, is the chance that the claim is disposed of the
same year the incident took place. It is reasonable to assume that D follows the same probability
distribution for all events and that there is stochastic independence between events. We are then
in a multinomial situation (Section 6.5). Let A be the total (and Poisson) number of claims
orginating a given year (some are undetected) and N; those settled [ years later, [ = 0,1,..., K.
We are then assuming that

(i) Mo, ..., Ng|N = n is multinomial(n, qo, - - ., g )
(i1) N ~ Poission(])),

which yield the simple result that

N ~ Poisson(ggA) with Ny, ..., Nk stochastically independent; (1.20)

see Section 8.7 for the proof. The delayed claims originate with the same basic N; still they are
independent. This allows us to keep track on many years simultaneously through the same machin-
ery as elsewhere; even the fitting of the model follows earlier leads. The rest of the present section
is devoted to these issues.

IBNR claim frequencies

We are dealing with a sequence of years (indexed —s) from year zero and back; see the scheme
above. Claims from that period haven’t necessarily come to light at the end of year zero. Let J_g
be the number of policies at risk in year —s (known), p_ the average claim intensity during the
same year (unknown) and let N_,; be the number of claims originating that year and settled [
years later. By (1.20) the entire set of {N_;;} are stochastically independent with

N_;; ~ Poisson(A_) where Asg=J squp—s- (1.21)
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What affects our balance sheet k years ahead is the total number of claims disposed of that year;
ie.

K—k
Ni =D Noghis (1.22)
s=0
As a sum of independent Poisson counts these quantities become Poisson themselves, with
K—k K—k
Ak = Z )‘fs,k—ks = Z qfs—HcJ—s//'—s- (1-23)
s=0 s=0
being the Poisson parameter of N. The pay-outs N,..., Nk over the entire time horizon ahead

are still stochastically independent. This useful observation enables us to employ the same tech-
niques for IBNR reserving as those introduced in Chapter 3.

Fitting delay models
A convenient way to fit model with delay probabiltities is to utilize that A_s; in (1.20) is on
multiplicative form so that

log(A—s;) = log(J—s) + oy + B, (1.24)

where

o = log(qi) and Bs = log(p—s). (1.25)

This is a Poission log-linear regression of the same type as in Section 8.4. There are now two in-
dexing variables [ and s (known in statistics as a two-way design), but it can still be handled by
ordinary Poisson regression software if special programs are unavailable. The data matrix {N_,;}
must then be concatenated into a single vector. Details in how that is done are given in Section 8.7.

The estimates &; and ﬂ; so obtained are likely to be wrongly scaled; i.e. when they are con-
verted to the orginal parameters we must ensure that {g;} is a probability distribution adding to
one. That is achieved by taking

G = exp(@;)/C, ji_s=CBs, where C = exp(dp) + ... + exp(dk). (1.26)

The resulting estimates are likelihood ones.

Syntetic example: Car crash injury

The example shown in Figures 8.3 and 8.4 is patterned on a real automobile portfolio of an Scandi-
navian insurance company. We are considering personal injuries following road accidents. A typical
claim rate could be around 0.5% annually. The true model generated in the computer is based on
the annual frequency

p==~EY, Y ~ Gamma(a) where £€=0.5%, «a=71.85.

Note that the true frequency of personal injuries varies randomly from one year to another in a
manner reflecting the automobile portfolio examined earlier in this chapter. The delay probabilities
were

q = Cexp(—p|l—1ll|), 1=0,...,K,
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Figure 8.3 Estimates of delay probabilites under circumstances described in the text

where the constant ensured that {g;} adds to one. Parameters were
K=20, B=015 I5=4.5,

which means that the distribution {¢;} has a top after four and five years ; it is plotted in Figure
8.3. All claims have been settled after K = 20 years.

Historical claim data were created for portfolios of J = 10000 and J = 100000 policies by means of
the following commands:

For s=0,1...,K —1do
Draw Y* ~ Gamma(a) and p*, <« &Y
For s=0,1...,K do
Draw N*_, ~ Poisson(Jqu* ).

The collection {N*;} (one single round of simulations) were used as historical material and pa-
rameter estimates extracted from them.

Figures 8.3 and 8.4 suggest that delay probabilites {¢;} and actual claim intensities {u* } can
be reconstructed. The pattern in the true delay probabiltites are certainely picked up (Figure 8.3),
and there is also good correspondence between the true and fitted claim intensitites (Figure 8.4).

1.7 Mathematical arguments

Section 8.2
Derivation the Poisson distribution Let N = I} + ... 4+ Ix where I; ... Ik are stochastically
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Figure 8.4 Estimates of claim frequencies under circumstances described in the text

independent with distribution
Pr(Iy =0) =1 — ph+ o(h), Pr(Iy = 1) = ph+ o(h), Pr(Iy > 1) = o(h).
We shall let h — 0 and K — oo while keeping their product 7" = Kh fixed. Introduce

A= max I[; <1 and A= max I > 1.
1<k<K 1<k<K

for which

K
Pr(A°) =Pr(l; >1lor... or Ix > 1) < ZPT(Ik >1) = Ko(h) :TO(:)-
k=1

This is due to the Bonferroni inequality; see Appendix A. It follows that Pr(A¢) — 0 as h — 0.
Moreover,

Pr(N =n) = Pr(N = n|A)Pr(A) + Pr(N = n|A°)Pr(A°),
so that

Pr(N =n) — Pr(N =n|A) = {Pr(N = n|A) — Pr(N = n|A}Pr(A°),
and it follows that

|Pr(N =n) — Pr(N =n|A)| <2Pr(A°) -0 as h—0.

This tells us that Pr(N = n) and Pr(N = n|A) have the same limit, and we may calculate the latter.
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Under the event A all I, are either zero or one, and N becomes binomial with ‘success’ proba-
bility

B Pr(I =1) B ph + o(h) B
P ol = 0) + P =1) 1= phtolh) +uhrom) M Hom)
so that
_Tu 1
P=7T O(?)'

The only difference from the argument in Section 8.2 is the presence of the error terms o(1/K).
Thus

PI‘(N:’)’I,|A) :Bl X B2 XBg X B4

where
B, - (/AT+Kno!(1/K))”’ BZZK(K—I)-}{-H(K—n-I-l)’
By = (1 - uT/K +o(1/K))X,  By= 1

(1-pT/K +o(1/K))"
When K — oo (and n is kept fixed), we obtain the limits

B, — (Tu)"/n', By — 1,

B3 — exp(—uT), By — 1.

The limits for By, By and By are obvious since o(1/K) and Ko(1/K) both tends to 0 whereas the
one for Bj is proved in Appendix C. Collecting the terms we have proved that

Pr(N =nl|A) — (T:')n exp(=T'u),

which completes the derivation.

Section 8.5
Justification of the estimates (1.13) and (1.14) The argument is based on

B)=¢  and  variy) =0} + o,
J

which was established in Section 8.5. Since the sum of all the weights w; = T;/(Th + ... + Ty)
in (1.13) is one, it follows that

Eé) =E (Z wjﬂj) =Y wiE(j) = D> wié =&,
j=1 j=1 7j=1

and f is unbiased. Moreover, since fi1, ..., fi, are independent
g S SYCTIEINRS 2, 2 2 £
var(€) = ]glevar(uj) = jZlej(Uu + ?j) =o,(wi + ... +wy,) + Tt 3T
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A~

which is the expression for sd(§) in Section 8.5.

The estimate for o, is based on
Q=" wi(i; —? = w;al - & for which EQ) =Y w;E(i3) — E(&).
j=1 j=1 j=1

Here

and

Inserting this yields

n n
2, £ 2 2 2 § 2
B(Q) = w; <0u+7j+£ ) — (%ijJrﬁJff ) ’
J=1
which simplifies to

=oi(1—) w; —.
g j=1 ’ Zj T
A moment estimate for o, is the solution of the equation

~

Q=:56%1 i 2l +cC where C (n—1)¢
=& — ) wj =
u = J >, T

which is the estimate (1.14), and the argument also shows that it must be unbiased.

Negative binomial: Density The definition was based on

Pr(V = nlp) = YT exp(-p)  ana g(u)z(‘;{S)aw—lexp<—ua/g)

By (1.12)

Pr(v =) = [T oxp(- i) x (G e exp(- o)

or when reorganized,

_ T (/)"

Pr(N =) = 0 et exp =T + /)
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Substituting z = u(T + a/¢) in the integrand yields

™ (a/§)”
n!T(a)(T + a/&)nte

o0
Pr(N =n)= / 2" exp(—2)dz,
0

where the integral is I'(n + «). Hence

I'n+ a T (/&) 'n+a) , n
Pr(iN =mn)= T(L!r(a)) T +(a//£))”+°‘ - T(L!r(a))p 1-7)

where p = a/(a + €T'). This is the expression (1.17) since I'(n + 1) = nl.

Negative binomial: Mean and variance By definition y is Gamma distributed and
E(N|p) = pT and var(N|p) = uT.

Since E(p) = ¢ and var(p) = &2/« it follows by the double rules of Section 6.3 that
E(N)=¢T and var(N) = €T + 7°T? = €T + €T/ e,

as claimed in (1.15).

Section 8.6

Poisson with multinomial delay. Let N be Poisson()) and suppose (Ny,...,Nk) given N =n
is multinomial (n,qg, - .., qk). Since Ny + ... + Nx = N, we have

Pr(NMy = ng,...,Nk = nk) = Pr(Ng = no, ..., Nk = ng|N = n)Pr(N =n)

where n = ng + ... + ng. Inserting the expressions for the probabilites on the right yields

n! n0 K A" -
Pr(NOZnO,...,NK:nK): mqo qK X F .

or

n n
_ 4 ak"

x (A"e?
nol gt <)

Pr(NO = nQ,--- aNK = nK)
where
)\nef/\ _ ()\noe*/\qo) . ()\nKe*/\qK)

since ng+...+nxg =nand go+ ...+ gx = 1. Hence

K
)"k
PI‘(N() =MNQy--- ,NK = TLK) = H Me—%)\
k=0 ng:

which is a product of independent Poisson densities, as claimed in Section 8.6.
IBNR: Implementation You may have trouble hitting an implementation of Poisson regres-

sion that handles the special two-way structure in Section 8.6. Here is how you can implement it
yourself by means of standard software.
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Start by noting that there are K probailities q; estimated through their logaritms ;. With n
years back there are n parameters y_g, again handled through their logarithms §;. Concatenating
yields the parameter vector

b = (a()’"' ’aKfl’lBO"" ’ﬂn)l'
of length

ne = K +n.
Note that b is a column vector. It is operated by a so-called design matrix X = (z;;) with n,
columns and as many rows as there are observations; i.e.

n
Ny = Zmin(l + s, K).
s=0

which equals?

n,=Mn+1)(n+2)/2, ifn<K
=K(n—-(K-1)/2), ifn>K.

To define X we must run the row index ¢ = [ + s over both [ and s in some order. At i = s +1

zij =1, fori=1[0K +s,
z;j =0, otherwise.
Finally, the observed counts must be concatenated into a single vector y with N_g at row ¢ = s+1

in the order consistent with that used for X.

When y and X is entered a Poisson regression program, likelihood estimates b of b are produced.
It might in practice well be that n < K. If so, it is imposiible to estimate the entire sequence {¢;}
and simplifying formulations must be introduced.

1.8 Further reading

1.9 Exercises

Section 8.2
Exercise 8.2.1 Let N; be the number of events up to time ¢ in a Poisson point process with constant
intensity pu and let X be the time the first event appears. a) Explain that

Pr(X > t) = Pr(N; = 0) = exp(—ut).
b) Identify the distribution of X. What is its expectation?

Exercise 8.2.2 The random variable X defined in the preceding exercise is known as a waiting time.

3There is a single observation for the last year (s = 1), two for the next to-last-year (s = 2), three for the
year before that and so on and no more than K observations for a single s.
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Let X; = X be the time to the first Poisson event, and more generally let X; be the time between events
i—1 and . Suppose that the claim intensity p is constant. a) Explain that X7, X5, ... are independent and
exponentially distributed. Let S; = Xy + ...+ X; be the time of the i’th event with Sp = 0. b) Argue that

Pr(S; < t < Siy1) = Pr(N; = i)

where Ny is the number of events up to ¢. ¢) Explain that this result leads to Algorithm 2.10; i.e. that NV
can be sampled by selecting it is as the largest integer ¢* for which X} + ...+ X <t.

Exercise 8.2.3 Consider an insurance portfolio with J policies that all generate claims according to a
Poisson point process with fixed intensity u. a) Use the preceding exercise to explain how you simulate the
time S; of the ’th claim of the portfolio. Let x4 = 0.5% annually and J = 400. b) Simulate the pair (S, Ss5)
and display m = 1000 replications in a scatter plot. ¢) Use the scatter plot to argue that these expenses
would vary enormously from one year to another if we are dealing with big-claim insurance with possible
huge pay-offs each time an incident occurs.

Exercise 8.2.4 Consider a time-hetereogenous Poisson point process and let Ny be the number of events up
to t. a) With X as the waiting time as in Exercise 8.2.2 argue as in Exercise 8.2.1 to deduce that

Pr(X > t) = Pr(N, = 0) = exp (- /O " ds) .

Let F(z) and f(z) = F'(x) be the distribution and density function of X b) By differentiating Pr(X > z)
show that

f(=z)

x
f(w) = Mg €XP (_/0 Ms d8> which lmphes that Mz = 1_7}7(:1:)

These relationships are also relevant with survival modelling in Section 12.3.

Exercise 8.2.5 This is a continuation of the preceding exercise. a) Use inversion (Algorithm 2.6) to show
that a Monte Carlo realisation of the waiting time X is generated by solving the equation

X*
/ ps ds = —log(U™) for U* ~ uniform.
0

Suppose ps = po exp(ys) where v # 0 is a growth (or decline) parameter. b) Show that a Monte Carlo
realization of the waiting time is generated by taking

1
X* = —log (1 - log(U*))
v Ho

¢) Explain how you sample the time S; of the ¢’th event in this Poisson growth process.

Exercise 8.2.6 This exercise treats the same intensity function us = poexp(ys) as in the preceding ex-
ercise, but now we introduce N}, as the number of incidents between t;_; and ¢ where t; = kh. a) Identify
the distribution of Ny. b) Explain how the sequence Ny, Ns,... are simulated. In practice this would often
be a more natural approach than simulating waiting times.

Exercise 8.2.7 Suppose the premium (paid up-front) for an insurance lasting up to time T is
T
7r=(1+’7)§/ s ds,
0
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where 7y is the loading and £ is mean payment per claim. If the insured leaves the contract at time 77 < T,
how much would it be fair to repay out of the original premium?

Section 8.3

Exercise 8.3.1 Let N1, N>... be stochastically independent and Poisson distributed with common param-
eter 7. a) Argue that X = Ny + ... + Nk is Poisson with parameter A = K7. b) Why does X tend to the
normal distribution as K — o007 ¢) Use a) and b) to deduce that the Poisson distribution with parameter A
becomes normal as A — oo.

Exercise 8.3.2 Consider the estimate i = (n1 + ... +n,)/(T1 + ... + T3,) in (1.5) where n1,...n, are
stochastically independent observations, the j'th being Poisson distributed with parameter uT;. a) Show
that f is unbiased with standard deviation (1.5). Suppose the intensity for n; is p;, depending on j. (b) Re-
calculate E(f1) and argue that the estimate £ has little practical interest if the times of exposure T1,...,T,
vary a lot. c¢) However, suppose you arrange things so that Ty = ... = T,,. Which parameter of practical
interest does [i estimate now?

Exercise 8.3.3 A classical set of historical data is due to Greenwood (1927) and shows accidents among
648 female munition workers in Britain during The First World War (the men were at war!). Many among
them experienced more than one accident during a period of almost one year. The data were as follows:

Number of accidents 0 1 2 3 4 >5
Number of cases 448 132 42 21 3 2,

which shows that 448 hadn’t had any accidents, 132 had have one, 42 two and so on. a) Compute the
mean and standard deviation 7 and s of the 648 observations. b) Argue that X\ = @ is a natural estimate
of X if we postulate that the number of accidents is Poisson distributed with parameter . [Hint: Answer:
A = 0.465]. ¢) Compute the coefficient of dispersion D = s2/i. What kind of values would we expect to
find if the Poisson model is true? d) Simulate n = 648 Poisson variables from the parameter A = 0.465 and
compute D from the simulations. Repeat 9 (or 99) times. Does the Poisson distribution look like a plausible
one? This story is followed up in Exercise 8.5.4.

Exercise 8.3.4 a) Implement Algorithm 8.1 due to Atkinson in a way that you can keep track on how
many repetitions are needed in the outer loop. b) Run it m = 1000 times for A = 10 and A = 50 and
determine the average number of trials required.

Section 8.4

Exercise 8.4.1 Consider a Poisson regression with v explanatory, categorical variables with ¢; categories for
variable . a) Explain that if you cross all variables with all others, then the number of different groups will
be ¢icz - -+ ¢, b) What is this number when the variables (automobile insurance) are sex, age (6 categories),
driving limit (8 categories), car type (10 categories) and geographical location (6 categories). ¢) Explain
how the the simple estimator (1.5) can be applied in this example and suggest an obstacle to its use.

Exercise 8.4.2 Consider Table 8.2. a) What would have happened to the estimated annual claim in-
tensities in Table 8.3 if the intercept term was —2.815 rather than —2.315? b) The same question if the
female parameter was 0.074 instead of 0.037. ¢) Suggest a maximum and a minimum difference between the
youngest and the next youngest age group by using the standard deviation recorded.

Exercise 8.4.3 Consider two individuals in a Poission regression with explanatory variables z1,...,xz,
and z{, ...,z respectively. a) Show that the ratio of intensities are
ﬁ/ = eb1(z17z'1)+...+b,, (zv*z;)’ estimated as 5 — ef?l(zlfza)+~~+?)u(zufwi,)’
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Suppose the estimates 131, .. .,IA)v are approximately normally distributed with means b, ...,b, (often rea-
sonable in practice). b) What is the approximate distribution of f/i'? Is it unbiased? c¢) How do you
determine the variance? [Hint: Look up log-normal distributions.]

Exercise 8.4.4 This is a continuation of the preceding exercise. Consider intensities g and p' on two
individuals of the same sex, one belonging to the oldest age group in Table 8.2 and the other to the group
56 — 70. Estimates of the coefficients are then = —0.637 (0.073) (oldest group) and —0.711 (0.070) (the
next oldest one). Estimated standard deviations are in parantheses. The estimated covariance (not shown
in Table 8.2) was 0.0025 and we shall assume that estimates are normally distributed. a) Estimate the ratio
of the two intensities. b) Compute the estimated standard deviation of log(ii/fi'). ¢) Adjust the estimate
of the ratio so that it becomes approximately unbiased. d) Determine a 95% confidence interval for the ratio.

Section 8.5

Exercise 8.5.1 let A/ be the total number of claims against a portfolio of J policies with identical claim
intensity p, and suppose N |p is Poisson with parameter JuT. a) What is the distribution of N if p = £Z,
7Z ~ Gamma(a)? b) Determine the mean and standard deviation of A. ¢) Calculate sd(N)/E(N) and
comment on how it depends on J. What happens as J — c0?

Exercise 8.5.2 This is a continuation of Exercise 8.3.3. A reasonable addition to the Poisson model
presented there is to assume that the parameter A is drawn randomly and independently for each woman.
Assume the underlying distribution to be Gamma. Each of the the n = 648 observed counts N is then Pois-
son distributed given A where A = £Z and Z is Gamma(a). a) What is the interpretation of the parameters
& and o for the situation described in Exercise 8.3.37 b) What’s the distribution of N now? c¢) Use the
moment method to fit it [Answer: You get £ =10.465 and & = 0.976]. One way to investigate the fit is to
compare E,, = 648 x Pr(N = n) (ezpected number) with the observed number O,, having had n accidents; see
the table in Exercise 8.3.3. d) For n =0,1,2,3,4 and n > 5 compare E,, and O, both for the pure Poisson
model and for the present extension of it. Comments? We should go for the negative binomial! e) What is
the likelihood that a given female worker carries more than twice as much risk as the average? What about
four times a much or at most one one half or one fourth? [Hint: To answer the questions use (for example)
the exponential distribution.]

Exercise 8.5.3 Suppose N|u is Poisson with parameter yT with two models under consideration for .
Either take y = £Z with Z ~ Gamma(a) or p = fexp(re) with € ~ N(0,1). a) Show that E(u) and sd(u)
is the same under both models if

-t n T =14/
B = Jitia and log(1 +1/a).

b) Argue that E(N) and sd(NV) then are the same too. ¢) Determine 8 and 7 when & = 5% and o = 4 and
simulate N under both models when 7" = 1. d) Generate (for both models!) m = 1000 simulations, store
and sort each set and plot them against each other in a Q-Q plot. Comments on their degree of discrepancy.

Exercise 8.5.4 Let fi, = N} /Tr be the estimate of the intensity uj in year k where N} is the number
of observed claims and T the total time of exposure; see (1.5). The estimates are available for K years.
Suppose all pj have been randomly drawn independently of each other with E(ux) = £ and sd(ur) = o,
(same for all k). If we ignore randomness in uy, our natural estimate of a common y is

T+ 47k T+ +Tx
a) Justify this estimate. b) Show that E(ji) = £ so that E(ji) = £. ¢) Also show that

or p=wifn +... +wgptxgy where wy
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[Hint: Utlize that E(fix|pr) = pr and var(fig|pr) = pr/ T, the rule of double variance and the formula for
the variance of sums formula.] In practice the number of years K is moderate, perhaps no more than a
few. ¢) Use the results above to argue that the uncertainty in an estimate i could be substantial despite
portfolios being large.

Section 8.6

Exercise 8.6.1 Suppose the delay probabiltities are of the form go = 0 and ¢; = Cexp(—yl) forl =1,... K
where C' ensures that their sum is one. a) Determine C. b) Plot the delay probabilities when v = 0.1 and
~v =0.2. Suppose all J_, = J and all N__; ~ Poisson(JuT). c) Determine the distribution of the claims N}
that will be settled at time k.

Exercise 8.6.2 In the situation in Section 8.6 suppose p_s = £Z_,; where Z_;, ~ Gamma(a) and all
Z_s are independent of each other. a) Argue that each N_; s is negatively binomial. Suppose J_; = J
is the same for all s; i.e that the portfolios of the past have been equally large at all times. b) Show that
the conclusion in a) carries over to Ny which is the sum over all s. ¢) Can it be concluded that N are
independent for different k? [Hint: Circumstances must be very special.]. Note that the conclusions have
consequences for how we simulate.
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