1 Modelling claim size

1.1 Introduction

Models describing variation in claim size lack the theoretical underpinning provided by the Poisson
point process in Chapter 8. The traditional approach is to impose a family of probability distri-
butions and estimate their parameters from historical claims z1, ..., 2, (corrected for inflation if
necessary). Even the family itself is often determined from experience. An alternative with consid-
erable merit in the computer age is to throw all prior matematical conditions overboard and rely
solely on the historical data. This is known as a non-parametric approach. Much of this chapter
is on the use of historical data.

How we go about is partly dictated by the size of the record, and here the variablity from one
case to another is enormous. With automobile insurance the number of observations n may be
huge, providing a good basis for deducing the probability distribution of the claim size Z. By
contrast, major incidents in industry (like the collapse of an oil rig!) are rare, making historical
material scarce. This span of variation is reflected in the presentation. Basic issues are parametric
versus non-parametric methods and (above all) the extreme right tail of distributions. Lack of his-
torical data in the region that matters most financially suggests that this problem deserves special
attention. The mathematical framework is mixing (Section 9.6) in combination with Pickands’
theorem from the theory of extremes (Section 9.4). A final, general issue is the uitilization of
incomplete or censored information.

1.2 Parametric and non-parametric modelling

Introduction

Claim size modelling can be parametric through families of distributions such as the Gamma,
log-normal or Pareto with parameters tuned to historical data or non-parametric where each
claim z; of the past is assigned a probability 1/n of re-appearing in the future. A new claim is then
envisaged as a random variable Z for which

. i=1,...,n. (1.1)

As model for Z this is an entirely proper distribution (since its sum over all 7 is one). If it appears
peculiar, there are actually several points in its favour (one in its disfavour too); see below. Note
the notation Z which is the familiar way of emphasizing that estimation has been involved. The
model is known as the empirical distribution function and will in Section 9.5 employed as a
brick in an edifice that also involves the Pareto distribution. The purpose of this section is to
review parametric and non-parametric modelling on a general level.

Scale families of distributions
All sensible parametric models for claim size are of the form

7 = B2, (1.2)

where 8 > 0 is a parameter, and Zj is a standardized random variable corresponding to 8 = 1.
This proportionality is inherited by expectations, standard deviations and percentiles; i.e. if &j, og



and qg. are expectation, standard deviation and e-percentile for Zj, then the same quantities for Z
are

& = Béo, o = fog and de = Bqoe- (1.3)

To see what 8 stands for, suppose currency is changed as a part of some international transaction.
With ¢ as the exchange rate the claim quoted in foreign currency becomes ¢Z, and from (1.2)
cZ = (c¢f)Zy. The effect of passing from one currency to another is simply that ¢ replaces 3, the
shape of the density function remaining what it was. Surely anything else makes little sense. It
would, for example, be contrived to take a view on risk that differed in terms of US$ from that in
British £ or euros, and the same point applies to inflation (Exercise 9.2.1).

In statistics 8 is known as a parameter of scale and parametric models for claim size should
always include them. An example worth commenting is the log-normal distribution used in earlier
chapters. If it is on the form Z = exp(f + 7¢) where ¢ is N(0,1), we may also write it
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1
Z =E&Z where Zy = exp(—§7'2 +7¢) and & =exp(@+ %)

Here E(Zy) = 1, and & serves as both expectation and scale parameter. The mean is often the most
important of all quantities associated with a distribution, and it makes sense to make it visible as
the scale parameter. Such tactics has in this book been followed whenever practical.

Fitting a scale family
Models for scale families satisfy the relationship

Pr(Z <2)=Pr(Zo < z/8)  or  F(z|8) = Fy (%) .

where Fy(z) is the distribution function of Z;. Differentiating with respect to z yields the family
of density functions

1 z
Additional parameters describing the shape of the distributions are hiding in fo(z). All scale fam-
ilies have density functions on this form.

f(z|B) ), z2>0 where fo(z) = Fj(2). (1.4)

The standard way of fitting such models is through likelihood estimation. If z,...,z, are the
historical claims, the criterion becomes

LB, fo) = —nlog(8) + 3" log{ fo(zi/B)}, (L5)

=1

which is to be maximized with respect to 8 and other parameters. Numerical methods are usually
required. A useful extension covers situations with censoring. Typical examples are claims only
registered as above or below certain limits, known as censoring to the right and left respectively.
Counsider n, of cases the former where by,---,b,, are lower bounds on the losses that actually
occurred. Event ¢ among those has probability is 1 — Fy(b;/3), and its logarithm is added to the



log likelihood (1.5) of the fully observed claims zi, ..., z,. In other words, likelihood estimation is
now undertaken by maximizing

L(8. fo) = —nlog(B) + Y log{fo(z/A)}  +  Slog{1 - Folbi/B)}, (16)
=1 =1
complete information censoring to the right

Censoring to the left is similar and discussed in Exercise 9.2.2. Details will be developed for the
Pareto family in Section 9.4.

Skewness as simple description of shape
A major issue in claim size modelling is the degree of asymmetry towards the right tail of the
distribution. A useful, simple summary is the coefficient of skewness defined as

v = skew(Z) = H_g where ps = E(Z —€)3. (1.7)
o

The numerator is the third order moment. Skewness should not depend on the currency being
used and doesn’t since

BE(Z-¢&)?® _ E(BZo - B&)° _ E(Zo — &)*
o’ (Boo)? o}
after inserting (1.2) and (1.3). Neither is the coefficient changed when Z is shifted by a fixed

amount; i.e. skew(Z +b) = skew(Z) through the same type of reasoning. These properties confirm
skewness as a (simplified) representation of the shape of a distribution.

skew(Z) =

= skew(Zy)

The standard estimate of the skewness coefficient v from observations z1, ..., 2, is
f3 1 .
y=—= here I3 = ———— —2)%. 1.8
=B e s S )

Here fi3 is the natural estimate of the third order moment' and s the sample standard devia-
tion. The estimate is for low n and heavy-tailed distributions typically severely biased downwards.
Under-estimation of skewness, and by implication the risk of large losses, is a recurrent theme with
claim size modelling in general and is common even when parametric families are used. Several of
the exercises are devoted to the issue.

Shifted distributions

Sometimes the distribution of a claim starts at some some threshold b instead of at the orgin.
Obvious examples are deductibles and contracts in re-insurance. Models can be constructed by
adding b to variables Z starting at the origin; i.e.

Zey=b+2Z=b+ B2,

where Z starts at the orgin. Hence

Pr(Zsy < 2) = Pr(b+ Zy < z) = Pt (ZO < z;b) ,

!Division on n — 3 + 2/n makes it unbiased.



and differentiating with respect to z yields

fou(21B) = %fo (z - ") , Z>bh, (1.9)

as density function for variables starting ar b.

Sometimes historical claims z1,...,z, are known to exceed some unknown threshold b. Their
minimum provides an estimate, precisely

b =min(z1,...,2,) — C, for unbiasedness: C = ,8/ {1 = Fy(2)}" dz; (1.10)
0

see Exercise 9.2.4 for the unbiasedness correction. It is rarely worth the trouble to take that too
seriously, and accuracy is typically high even when it isn’t done?. The estimate is known to be
super-efficient, which means that its standard deviation for large sample sizes is proportional to
1/n rather than the usual 1/4/n; see Lehmann and Casella (1998). Other parameters can be fitted

by applying the methods below to the sample z; — b,...,z, —b.

Non-parametric estimation

The random variable Z that attaches probabilities 1/n to all claims z; of the past is a possible model
for future claims. Its definition in (1.1) as a discrete set of probabilities may seem at odds with the
underlying distribution being continuous, but experience in statistics (see Efron and Tibshriani,
1994) suggests that this matters little. As with other distributions there are an expectation, a
standard deviation, a skewness coefficient and also percentiles. All those are close related to the
ordinary sample versions. For example, the mean and standard deviation of Z are by definition

1 n 4 1/2
—zi =2, and sd(Z) = (Z —(z; — z)2> =s. (1.11)
n i=1
Percentiles are approximately the historical claims in descending order; i.e.

gc = Z(en) where Z(1) 2 -+ 2 Z(n)-

The skewness coefficient is also similar; see Exercise 9.2.4.

The empirical distribution function can only be visualized as dot plot where the observations
Z1,---,2pn are recorded on a straight line to make their tightness indicate the underlying distribu-
tion. If you want a density function, turn to the kernel estimate in Section 2.2, which is related to
Z in the following way. Let € be a random variable with mean 0 and standard deviation 1, and
define

Zy = Z + hse, where h > 0. (1.12)
The distribution of Zj, coincides with the estimate (?7); see Exercise 9.2.5. Note that

var(Zy) = s% + (hs)? so that sd(Zp) = sV1+ h2,

2The adjustment requires C' to be estimated. It is in any case sensible to subtract some small number
C > 0 from the minimum to make z; — b strictly positive. Software may crash otherwise.
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a slight inflation in uncertainty over that found in the historical data. With the usual choices of h
that can be ignored. Sampling is still easy (Exercise 9.2.6), but usually there is not much point in
using a positive h for other things than visualization.

In finance the empirical distribution function is often referred to as historical simulation. It
is ultra-rapid to set up and to simulate (use Algorithm 4.1), and there is no worry as to whether
a parametric family fits or not. On the other hand, no simulated claim can be larger than what
has been seen observed in the past. How serious that drawback is depends on the situation. It may
not matter too much when there is extensive experience to build on. In the big consumer branches
of motor and housing we have presumably seen much of the worst. The empirical distribution
function can also be used with big claims when the responsibility per event is strongly limited, but
if it is not, the method can go seriously astray and under-estimate risk substantially. Even then is
it possible to combine the method with specific techniques for tail estimation as in Section 9.5; see
also some of the exercises.

1.3 The Gamma family

Introduction
Gamma distributions were introduced in Section 2.6. The family is a two-parameter one for which

Z =¢&2Z where Zy ~ Gamma(a). (1.13)

Here Zj, with mean one, will be called a standard Gamma. Its density function is

o a—1
= — exp(— > 05 1.14
fo(2) T)? xp(—az), z>0; (1.14)
see (7?). Good operational qualities and flexible shape makes the Gamma model useful in many
contexts. It is one of the most common distributions for claim size in property insurance, and has
also been used with stochastic volatility and with stochastic claim intensity; see Sections 2.3. and
8.5.

Properties
Mean, standard deviation and skewness of a Gamma, distributed Z are

E(Z)=¢, sd(Z) =¢/Va and skew(Z) = 2/v/a, (1.15)
and the model possesses a so-called convolution property. Let Zyq,..., Zy, be an independent

sample from Gamma(a). Then
Zy ~ Gamma (na) where Zo = (Zo1 + - -+ Zon) /n;

see Appendix A. In other words, the average is another standard Gamma, variable, the shape now
being na. By the central limit theorem Zj also tends to the normal as n — oo, and this proves
that Gamma variables become normal as a — oo. This is visible in Figure 9.1 left where Gamma
percentiles are Q-Q plotted aganst normal ones. The line is much straightened out as a = 10 is
replaced by @ = 100. A similar tendency is seen among the density functions in Figure 9.1 right
where two of the shapes were used with stochastic intensies in Section 8.5. More general versions
of the convolution property are given among the exercises.
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Figure 9.1 Left: Q-Q plot of standard Gamma percentiles against the normal. Right: Standard
Gzamma density functions.

Fitting the Gamma familiy

The method of moments (Section 7.3) is the simplest way to determine Gamma parameters ¢ and
a from a set of historical data z1,...,2,. If the theoretical expressions are matched sample mean
and standard deviation z and s, we obtain

z=¢, s=E&/Va with solution E=z a=(z/s)%

Likelihood estimation is slightly more accurate, and is available in commercial software, but it is
not difficult to implement on your own. The logarithm of the density function of the standard
Gamma is

log{fo(2)} = arlog(a) —log{T'(a)} + (a — 1) log(2) — az

which can be inserted into (1.5). After some simple manipulations this yields the log likelihood
function

L(¢, @) = nalog(a/é) — nlogT(a) + (@ — 1) Y log(z;) — % 3 2. (1.16)
j=1 j=1
Note that
8—L:—E+giz~ zero when E=(z1+...+2zp)/n=12
86 £ 62 Z 9 1 s n .

It follows that £ = z is the likelihood estimate and L(z,a) can be tracked under variation of « for
the maximizing value &; see also the bisection method in Appendix B.



Gamma and related regressions

Sometimes you may want to examine whether losses tend to be systematically higher with certain
customers than with others. To the author’s experience the issue is not so important as it was with
claim frequency, but we should know how it’s done. Basis are historical data similar to those in
Section 8.4, now of the form

21 T11° Tl
22 Tl Ty

Zn Tnl** Tno,
losses covariates

and the question is how we use them to understand how a future, reported loss Z are connected to
explanatory variables z1,...,z,. The standard approach is through

VAESIA where log(¢) = by + biz1 + ... + byzy,

and E(Zy) = 1. As the explanatory variables fluctuate, so does the mean loss &.

Frequently applied models for Zy are log-normal and Gamma. The former simply boils down
to ordinary linear regression. The logarithm of the claim in then used as as dependent variable and
the explanatory variables fitted through least squares; see Exercise 77. Gamma regression is avail-
able in commercial software and implemented as likelihood fitting through an extension of (1.16),
see Exercise 9.4.7, but you may be unlikely to implement this on your own. For an example, see
Section 10.3.

Simulation algorithm

Gamma sampling is not so easy. A simple rejection/acceptance method was developped in Section
2.6 (Algorithm 2.11), but much faster procedures are available; see Devroye (1986). The following
procedure is a more a fined-tuned version of rejection/acceptance. It is efficient and reasonably
simple to implement:

Algorithm 9.1a Sampling Gamma (Requirement: o > 1)

0 Input: §, candb=a —1, ¢ = 3a — 0.75.

1 Repeat

2 Sample U* ~ uniform

3 W*«U*(1-U*), Y*<+ \Jc/Wx(U*-0.5), Z*«+b+Y*

6 If Z* > 0 then

7 Sample V* ~ uniform(0, 1)

8 X* ¢+ 64(W*)3(V*)2

9 If X*<1-2(Y*)?2/z* or iflog(X™*) < 2{b(log(Z*/b) — Y*)}

then stop and return Z* < {Z*/a.

The loop is repeated until the stopping criterion is satisfied. Note that algorithm only works
for when o > 1. In the opposite case, we may invoke Stuart’s theorem; i.e.

Z = €YUY® ~ Gamma(a,§) if Y ~ Gamma(l + «), U ~ Uniform;
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see Devroye (1986). In other words, the case o < 1 is referred back to the shape parameter 1 + a,
which is solved by Algorithm 9.1a. In detail:

Algorithm 9.1b Sampling Gamma (Requirement: a < 1)
0 Input: ¢, o
1 Sample Z* ~ Gamma(l + «) %Standard Gamma, Algorithm 9.1a

2 Sample U* ~ uniform
3 Return Z* « £Z*(U*)Y/>

Together the two sub-algorithms offers efficient sampling from the general Gamma distribution.
The average number of trials in Algorithm 9.1a is about ?77.

1.4 The Pareto family and extremes

Introduction

The Pareto distributions, introduced in Section 2.6, are among the most heavy-tailed of all models
in practical use and potentially a conservative choice when evaluating risk in property insurance.
Density and distribution functions are

a/B 1
—————— and F(z)=1— ———, z > 0.
(it z/A)e &= G
Simulation was easy (Algorithm 2.8), and the model was used for illustration in several of the
earlier chapters. But Pareto distributions also play a special role in the mathematical description
of the extreme right tail. There are, perhaps surprisingly, general results in that direction. That is
the main topic of this section.

flz) =

Properties
Pareto models are so-heavy-tailed that even the mean may fail to exist (that’s why another param-
eter 3 represents scale). Formulae for expectation, standard deviation and skewness are

e—B(z)= L sd(Z)zg( a )1/2, skew(Z):2< a )1/2‘”1 (1.17)

a—1 a—2 a—2 a—3’

valid for @ > 1, @ > 2 and a > 3 respectively. It is to the author’s experience rare in practice that
the mean doesn’t exist, but infinite variances with values of « between 1 and 2 are not unfrequent
in big claims situations. We saw in Section 2.6 that the exponential distribution appears in the
limit when the ratio 8/« is kept fixed and their common value raised to infinity. The Pareto and
the Gamma families intesect in this sense, the exponential being the most light-tailed among the
former and one of the heavy-tailed ones among the latter.

One of the most important properties of the Pareto family is its behaviour at the extreme right
tail. The issue is defined by the over-threshold model which is the distribution of Z, = Z — b
given Z > b. Its density function (derived in Section 6.2) is

_ flb+2)
fb(z)—ma



see (?7?). It becomes particularly simple with Pareto models. Inserting the expressions for f(z)
and F(z) yields

(L+b/B)*/B /(B +1)
I+ @E+b)/BH— {1+2/(B+h}e

Pareto density function

fo(z) =

after some simple manipulations. This is again a Pareto density. The shape « is the same as before,
whereas the parameter of scale has become S, = 8 + b. In other words, over threshold models for
Pareto variables remain Pareto with shape unaltered. The mean (if it exists) is known as the mean
excess function, and becomes

B _ﬂ—|—b_ b
a—l_a—1_£+a—1

E(Zy|Z > b) = (requires « > 1). (1.18)

It is larger than the original ¢ and increases linearly with b.

Pickands’ theorem

The tail property of Pareto models has a general extension. In 1975 Pickand discovered that only
very limited classes of distribution can appear as over-threshold models when b becomes infinite. In
fact, if the parent distribution for Z is continuous with no upper limit, the over-threshold model is
bound to become Pareto as b — co. That occurs whatever distribution we started with; see Pickands
(1975). There is also a theory when Z is bounded by some given maximum, but such models are
less frequent and perhaps less natural to employ; see Embrects, Kliippelberg and Mikosch (1997)
for that extension.

The mathematical formulation requires some additional notation. Let F(z|«, ) be the distribution
function of Pareto(a, §) and define

Go(2) =Pr(Zy < 2|Z >b) =Pr(Z < b+2|Z >D)

as the over threshold distribution function of an arbitrary random variable Z. Suppose Z is con-
tinuous without fixed upper limit. Then there ezists a positive parameter a (possibly infinite) such
that for all thresholds b there are parameters By (depending on b) that makes

m>aS<|Gb(z) — F(z|la, Bp)| = 0, as b— oc.
z_

This tells us that discrepancies between the two distribution functions vanish as the threshold
grows. At the end they have become equal, and the over-threshold distribution a member of the
Pareto family. The result applies for finite b (with 8, = 8 + b), if the original model was Pareto.
Note that a can be infinite. The limit distribution is then the exponential which we may regard as
a limiting member of the Pareto family.

Fitting under right censoring

Estimation of Pareto parameters was treated in Section 7.3, but we shall now add censored ob-
servations. That issue was introduced in Section 9.2. Only censoring to the right is worked out. A
claim is then known to have exceeded a certain threshold, but not by how much. Observations are
now in two groups, the ordinary, fully observed claims z1,..., 2, and the n, censored ones above



thresholds by,...,by,,. The likelihood method offers a suitable way to draw on both sources of
information. For the first group the log likelihood function is as in Section 7.3; i.e.

L1(a, B) = nlog(a/f) — (1 + @) Zn:log(l + %)
1=1

Then there is the censored part where it is only known that Z; > b;. The probability of this
happening is
1

and when all those are summed over ¢ and added L;(«a, 3), we obtain the full log likelihood

L(a,B) =nlog(a/B) — (1 + ) znjlog(l + %) - agjlog(l + %)

complete information Censoring to the right

which is to be maximized.

As a numerical problem this is about the same as in Section 7.3. An elementary procedure you can
program on your own is the following. For given § ordinary differentiation proves that L(«, ) is
maximized by

-1

Gg=n (Z log(1 + %) + ilog(l + %)) ,
i=1 i=1

and the optimum is found by tracking the function £(ég, §) over 3, as explained in Section 7.3. The
best way of solving such one-dimensional problems is through the bisection method; see Appendix

C.

1.5 Large claim situations

Introduction

The big claims play a special role because of their importance financially. It is also hard to assess
their distribution. They (luckily!) do not occur very often, and historical experience is therefore
limited. Indeed, insurance companies may give cover to claims larger than have been seen earlier.
What should our approach be in these situations? The simplest would be to fit a parametric fam-
ily and extrapolate beyond past experience, but that may not be a very good idea. A Gamma
distribution may fit well in the central regions without being reliable at all at the extreme right
tail. Indeed, such a procedure may easily underestimate big claims risk severely; see Section 9.6. A
Pareto model would be more conservative, and then there is the result due to Pickands that points
to this distribution as a general description above all large thresholds. There is an idea here, and
the purpose of the present section is to develope it.

An approach through mixtures
Historical claims look schematically like the following:
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Ordinary size Large
Claims: Z(1)y -+ 5 Z(ny) b Z(ny+1)s -+ - 1 Z(n)

There are many values in the small and medium range to the left of the vertical bar and just
a few (or none!) large ones to the right of it. What is actually meant by ‘large’ is not clear-cut,
but let us say that we have selected a threshold b defining ‘large’ claims as those exceeding it. The
original claims 2y, ..., 2, have been ranked in ascending order as

so that observations from z(,,) and smaller are below the threshold and those from z(,, ;) and
larger are above. How the threshold b is chosen in practice is discussed below; see also the numer-
ical illustrations in Section 9.6.

Our strategy is to divide modelling into separate parts defined by the threshold. A random variable
(or claim) Z may always be written

Z = (1 - Ib)ZSb + Iy Z<y (1.19)
where
Z<y = Z|Z < b, Zsy=2Z|Z >b and IL,=0 ifZ<b (1.20)
central region extreme right tail =1 ifZ>hb

The random variable Z<; is Z confined to the region to the left of b, and Z~; is similar to the right.
It is easy to check that two sides of (1.19) are equal, but at first sight this merely looks complicated.
Why on earth can it help us? The point is that we have created a framework reaching out to two
different sources of information. To the left of the threshold there is the historical data with which
we may identify a model. On the right the result due to Pickands suggests a Pareto distribution.
This defines a modelling strategy which will now be developped.

The empirical distribution mixed with Pareto

The preceding argument lead to a two-component approach which can be implemented in many
ways. For example, to the left of b we could fit a parametric model. It would extend beyond b, but
that may not matter too much; see Exercise 77. Another idea is to use non-parametric modelling,
and this is the method that will be developed in detail with the threshold selected as one of the
observations. Choose some small probability p and let n; = n(1 —p) and b = z(,,) . Then take

Z<p = Z and Zsp = 2(n,) + Pareto(a, f), (1.21)
where Z follows the empirical distribution function over Z(1)s -1 %(ny)} 1€
A 1 .
Pr(Z =24)=—, i=1...,n1. (1.22)
n1

The remaining part (the delicate one!) are the parameters are « and 8 and the choice of p. Plenty
of historical data would deal with everything. Under such circumstances p can be determined low
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enough (and hence b high enough) for the Pareto approximation to be a good one, and historical
data to the right of b provides estimates & and B There are even sophisticated, automated tech-
niques for the selection of p, see 7 and 7. In practice you might do just as well with trial and error.
An example of this kind is discussed in the next section.

With more limited experience (as is common) is is hard to avoid a subjective element. One of
the advantages of dividing modelling into two components is that it clarifies the domain where
personal judgment enters. If you take the view that a degree of conservatism is in order when there
is insufficient information for accuracy, that can be achieved by placing b low and using Pareto
modelling to the right of it. Numerical experiments that supports such a strategy are carried out
in the next section. Much material on modelling extremes can be found in Embrects, Kliippelberg
and Mikosch (1997).

Sampling mixture models
As usual a sampling algorithm is also a summary of how the model is constructed. With the em-
pirical distribution used for the central region it runs as follows:

Algorithm 9.2 Claims by mixtures

0 Input: Sorted claims z(;) < ... < 24, p, n1 =n(l—p), o and S.
1 Draw uniforms U7, Us

2IfUf >p  then

3 i* « 1+ [nUs] and Z* « (%) % The empirical distribution, Algorithm 4.1
else

4 Z* b+ p{(Uz) Y -1} % Pareto, Algorithm 2.8

5 Return Z*

The algorithm operates by testing whether the claim comes from the central part of the distri-
bution or from the extreme, right tail over b. Other distributions could have been used on Line 3.
The present version is extremely quick to implement.

1.6 Searching for the model

Introduction

A final model for claim size is the result of different deliberations. Historical data have typically been
utilized through a non-parametric approach or with parametric families. We may also have changed
the variable. The idea is then that standard families of distributions may fit a transformed vari-
able better than the original one, and with re-transformation afterwards the model again applies to
ordinary claims. One of our worries should be model error. Does the distribution selected reflect
the uncertainty of real life? If there are small amounts of data to go on, the discrepancy could
be huge. Should that lean us towards concervative choices? If accurate mathematical descriptions
are beyond reach anyway, it could be an argument in favour of heavy-tailed distributions like Pareto.

The purpose of this section is to indicate how these themes enter by means of two very differ-
ent examples. We have already met the Norwegian fund for natural disasters in chapter 7 where
there were just n = 21 historical incidents to rely on. By contrast the so-called Danish fire claims
will serve our needs for a ‘large’ data set. Many authors on actuarial science have used it as a
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test case; see Embrechts, Kliippelberg and Mikosch(1997) where more on their orgin is given. The
historical record comprises n = 2167 industrial fires. Damages start at one million Danish kroner
(DKK)? with 263 as a maximum and with average z = 3.39, standard deviation s = 8.51 and
skewness coefficient v = 18.7. The latter indicates very heavy tails and strong skewness towards
the right. This also emerges clearly from the plots in Figure 9.2 and 9.3 below.

Working with transformations
A useful tool for modelling is to change data by means of a transformation, say H(z). The situation
is then as follows:

Zlyeves2n y1 = H(z1),.-- yn = H(zp)-
original data new data

Modelling is then attacked through y,...,y, and Y = H(Z) instead of the original Z. The idea
is to make one of the simple models fit better than could be achieved with Z itself. At the end we
re-transform back through Z = H~1(Y)) with Z* = H=1(Y*) for the Monte Carlo. The log-normal
is a familiar example. Then H(z) = log(z) and H~!(y) = exp(y) with Y normal. The logarithm is
the most commonly used transformation of all. Frequently applied alternatives are powers Y = Z"
where 7 # 0 is a some given index. The choice of transformations (typically made by trial and
error) is a second feature that adds flexibility to the usual families of distributions.

Variations on this theme are indeed many. With logaritms we might take

Y =log(l1+ 2) Y =log(2),

Y positive Y over the entire real line

and entirely different families of distributions would be used for Y. As an example consider the
Danish fire claims where we must take into account that they run from 1 and upwards (in milllion
DKK). That makes Y = log(Z) positive, and one possibility could be the log-normal through

~

Z=e", Y= fye_72/2+” with estimates & =119, 7 = 1.36.

Here € is N(0,1). An alternative is the Gamma familiy. Let Y, be Gamma distributed with mean
one and shape a and consider

Z=e", Y =¢Ya with estimates £, =0.79, & = 1.16.

Both pairs of estimates are likelihood ones.

What is immediately clear from the huge discrepancy in the estimated means &, is that both
models can’t fit. Indeed, the log-normal doesn’t work. Its estimated density function (Figure 9.2
left, horizontal axis on logarithmic scale) matches the kernel density estimate poorly, but (as usual)
Q-Q plotting (Figure 9.2 right) provides a better view. The right tail of the log-normal is too heavy
and exaggerates the risk of extreme claims grossly*. By contrast the Gamma fit as displayed in
Figure 9.3 is much better. Perhaps the extreme right tail is slightly too light, but the fit isn’t an

3There are about eight Danish kroner in one euro.
4Note that the 167 largest observations have been left out to make the resolution in other parts of the
plot better
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Estimated density functions for log of Danish fire data Fitted log-normal against EDF
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Figure 9.2 The log-normal model fitted the Danish fire data on log-scale. Density function with
kernel density estimate (left) and Q-Q plot (right).

end in itself, and consequences for the evaluation of the reserve is not necessarily serious. That will
be examined in Section 10.3; see also Exercise 9.6.2 where a slight modification will improve the
fit.

Pareto and Pareto mixing

The Pareto model is so heavy-tailed on its own that it could be tried on the raw Danish fire data di-
rectly (without log-transform). It is also a strong candidate for the extreme right tail (Section 9.4).
Indeed, with such an extensive data record it is tempting to forget all about parametric families and
use the strategy advocated in Section 9.5 using the empirical distribution function for the central
part and Pareto on the right. Table 9.2 shows the results of fitting Pareto distributions (through
maximum likelihood) over various thresholds b. As b is being raised, the situation should become
more and more Pareto-like (Pickand’s theorem). Under a strict Pareto regime, the shape parameter
« is the same for all b whereas the scale parameter depends on b through g, =b— 1+ 8/(a — 1);
see Exercise 7. Stretching the imagination a bit there are reminiscences of this in Table 9.1 where
« is more stable than (; see Exercise 9.4.1 for detailed calculations.

But it would be a gross exaggeration to proclaim the data to be Pareto distributed. Q-Q plots for
two of the over threshold distributions is shown in Figure 9.4. There is a reasonable fit on the right
(above 5%), but not on the left (above 50%) where the Pareto distribution fitted has heavier tails
that the empirical counterpart. Table 9.1 tell us why. The two shape parameters estimated (1.42
and 2.05) deliver quite unequal extreme uncertainty.

Tiny historical records

How should we confront a situation like the one in Table 7.1 (the Norwegian natural disasters)
where there were no more than n = 21 claims in total, and where the phenomenon itself surely is
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Estimated density functions for log of Danish fire claim data Fitted Gamma against EDF
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Figure 9.3. The Gamma model fitted the Danish fire data on log-scale. Density function with
kernel density estimate (left) and Q-Q plot (right).
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Figure 9.4 Q-Q plots of fitted Pareto distributions against the empirical distribution function, 50%
largest observations (left) and 5% largest (right).
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heavy-tailed with potential losses much larger than those on record? The underlying distribution
can’t be determined with much accuracy, yet somehow a model must be found. One possibility is
geophysical modelling. Natural disasters are then simulated in the computer and their cost counted
from detailed, physical descriptions of houses and installations. Evaluations of this kind are carried
out around the world, but they are outside out natural range of topics, and we shall concentrate
on what can be extracted from historical losses.

If you fit the Gamma and Pareto family to the natural disasers by maximum likelihood, the results
look like this:

Shape Mean 5% 1% Shape Mean 5% 1%
0.72 179 603 978 1.71 200 658 1928
Gamma family Pareto family

These are very different families of distributions, yet their discrepancies, though considerable, are
not enormous in the central region (say up to the upper 5% percentile). For the very large claims
that changes, and the Pareto 1% percentile is twice that of the Gamma. There is a lesson here.
Many families fit reasonably well up to some moderate threshold. That makes modelling easier
when there are strong limits on responsibilities. If it isn’t, the choice between parametric families
becomes a more delicate one.

The right family: Impossible?

Incidentally, how impossible is it to determine the family from small amounts of data? Suppose a
Q-Q plot is used. A given family such as Gamma or Pareto is then evaluated by comparing their
estimated percentiles g; to empirical ones z(;) where the former correspond to distributions fitted
the data. What is actually done when the two sequences are matched, is unclear (different ways
for different people), but perhaps some try to minimize

Q=">_ld — z|- (1.23)
i=1

This criterion has been proposed as basis for formal goodness of fit tests in Devroye (1971). It
could be that humans do it a little better, but results using other critera didn’t deviate that much
from those in Table 9.2.

Unit: Million DKK

Part of data fitted
All 50% largest 10% largest 5% largest

Threshold (b) 1.00 1.77 5.56 10.01
Shape () 1.64 1.42 1.71 2.05
Scale (B) 1.52 1.82 7.75 14.62

Table 9.1 Pareto parameters for the over threshold distribution of the fire claims.
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Shapes in true models: 1.71 in Pareto, 0.72 in Gamma. 1000 repetitions.

True Historical record: n = 21 Historical record: n = 80
model Models found Models found

Pareto Gamma log-normal Pareto Gamma log-normal
Pareto .49 .29 .22 .72 A2 .16
Gamma 44 .51 .05 .34 .66 0

Table 9.2 Probabilites of selecting given models (Bold face: Correct selection).

Monte Carlo experiments were run with m = 1000 replications according to the following scheme:

True model Parametric family tried
Pareto fitting q5 > ... > G},

or — 2., > 2 — — Q*:Zﬂza)—@”
Gamma historical data  sorting za) > zz‘n)

Simulated historical data were drawn from the Pareto or Gamma model on the left and the model
(possibly a different one!) fitted. That gave estimated percentiles ¢ which could be compared
to purely empirical ones z*i) and a value of the criterion Q* computed for the parametric model
tried. When Pareto, Gamma and log-normal were fitted to the same historical data, we obtain
three different evaluations @*, and the distribution corresponding to the smallest, best-fitting one
was picked. The selection statistics is shown in Table 9.2. It is clearly impossible to choose between
the three models when there are only n = 21 claims. The chance is improved with n = 80 and with
n = 400 (not shown) the success probability was about 0.90 — 0.95.

Data in short supply: What then?

The preceding experiment showed the futility of trying to identify models from small amounts of
historical data, but when faced with such situations, how should they be attacked? Here are some
tentative suggestions. A good deal hinges on the maximum responsibility b per claim. If it is
smaller than the largest observation z(j), it could be a case for the empirical distribution function.
That doesn’t help us much with the Norwegian natural disasters from Section 7.4 where b is much
larger than z(;), and risk would be grossly under-estimated by that method. Surely the Pareto
distribution is one of the leading contenders now. It is a conservative choice (which seems sensible),
possibly estimation errors undermine some of that caution.

These points are illustrated by the experiment in Table 9.3 where the issue is the consequences
of being wrong. For example, if the underlying distribution is a member of the Gamma family,
how does a Pareto fit perform? Or what about estimated Gamma percentiles when the true model
is Pareto? Clauses of maximum payments have much bearing on this (as mentioned), but these
problems can also be inspected through

~

é:q—s for e = 1%.

Ge

Patterns in how 6§ deviate from 1 reveal the impact of model and estimation error jointly. Sup-
pose the Gamma family is fitted to claims that are actually Pareto distributed. It then emerges
from Table 9.3 (Line two from bottom) that the 90% percentile of 6 is at most one; i.e. gpo1 is

17



m = 1000 replications
True model: Pareto, shape = 1.71 | True model: Gamma, shape = (.72
Record: n=21 Record: n=80 Record: n=21 Record: n=80
Percentiles (%) 25 75 90 | 25 75 90 25 75 90 | 26 75 90
Fitted Pareto 04 15 29,07 13 1.7 |08 14 22|09 1.3 1.6
Fitted Gamma 0.3 0.6 1.0 | 04 0.7 09 08 1.1 1.3,09 1.1 1.2
Model selected 0.4 1.2 23 | 0.6 1.2 1.6 08 1.2 1509 1.1 1.3

Table 9.3 The distribution (as 25 70 and 90 percentiles) ofé = §o.01/9o0.01 where oo
is fitted and qo.o1 true 1% percentiles of claims. Bold face: Correct parametric family used.

almost certain to be under-estimated! The tendency is reversed when the Pareto model is applied
to Gamma-distributed losses. Now the percentile is over-estimated. Certainly, we are doing some-
thing silly, and yet in practice we might not know. The method that comes on top in Table 3 is the
last one where the percentiles are computed form the best-fitting of both the Gamma and Pareto
distributions, i.e. the alternative minimizing (1.23) has been picked. Now the the distribution of 6
varies around one, though with huge errors.

In summary it seems sensible to try determine the family empirically even for small data sets
(though we often guess wrong). If we go for conservatism and caution, the Pareto model may be
the answer despite the huge uncertainty of the fitted parameters.

1.7 Further reading

1.8 Exercises

Section 9.2

Exercise 9.2.1 Let I be a rate of inflation. A new price is then (1 + I)P if the old one was P. a) Suppose
claim size Z is Gamma(a, £) in terms of the old price system. What are the parameters under the new,
inflated price? b) The same same quation when the old price is Pareto(a, ). ¢) Again the same question
when Z is log-normally distributed; i.e when log(Z) ~Normal(f,7). What are § and 7 under the inflated
prices system?

Exercise 9.2.2 Consider the shifted distribution (1.5). What happens to the shift parameter b when
prices changes from P to (1 + I)P as in the preceding exercise?

Exercise 9.2.3 The empirical distribution function (1.1) has mean and variance coinciding with average
and sample variance of the historical data z1, ..., 2,. What is the skewness coefficient of this distribution?

Exercise 9.2.4 Let a and b be fixed coefficients. Consider a linear transformation ¥ = a + bZ of a
claim Z. a) Show that

skew(Y) = skew(Z).

b) What happnes to the skewness coefficient when currency is changed? ¢) The same question when prices
inflate? d) Suppose Z is shifted by b as in (1.5). Is the skewness coefficient changed?

Exercise 9.2.5 Redo Exercise 9.2.4, but now for the kurtosis of the distribution; see Section
2.2 for the definition of the kurtosis.
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Exercise 9.2.6 We shall in this exericise consider simulated, log-normal historical data. We know
all answers since the data are generated in the computer laboratory, and shall compare skewness
estimated thro fitted distribution with the true one. a) Generate n = 30 log-normal claims using
0 = —0.5 and 7 = 2. b) Compute the skewness coefficient (1.5). Redo four times. ¢) Compare
the five estimated skewness coefficients and percentiles in ¢) with the true ones you compute from
the underlying log-normal distributions. Are there patterns? d) Redo a),b) and ¢) when 7 = 0.5.
What about the patterns now?

Exercise 9.2.7 This exericise works with simulated, log-normal historical data as in Exercise
9.2.6, but we are now assuming that we know the correct family distributions. The parameters are
still unknown, and the issue is the impact of the errors in their estimates. a) Generate n = 30
log-normal claims using § = —0.5 and 7 = 2. b) Fit a log-normal distribution and compute its
skewness coefficient and its upper 5% percentile. Redo four times. ¢) Compare the five estimated
skewness coefficients and percentiles in c¢) with the true ones. Are there patterns? d) Redo a),b)
and c) when 7 = 0.5. Have the patterns changed?

Exercise An example is the log-normal

exp(372) — 3exp(7?) + 2
(exp(r2) —1)32 7

Z = exp(0 + T¢) for which skew(Z) =

which approaches 0 as 7 < 0 and increases rapidly as 7 is raised. It is around 8 for 7 = 1, corre-
sponding to the highly asymmetric density function in Figure 2.4 right.

Exercise
skew(Z) = n 27—;3('2" —2° (1.24)
Section 9.3
Exercise 9.3.1
Section 9.4
L(by,.. il (oz log(a/&;) —logT'(c) + (a — 1) log(z;) — %zj) . where log(&) = by + b1z
j=
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