Exercises

Section 9.2

Exercise 9.2.1 The cost of settling a claim changes from Z to Z(1 + I) if I is the rate of inflation between
two time points. a) Suppose claim size Z is Gamma(a, £) in terms of the old price system. What are the
parameters under the new, inflated price? b) The same same question when the old price is Pareto(a, 8). c)
Again the same question when Z is log-normally distributed. d) What is the general rule for incorporating
inflation into a parametric model of the form (??)?

Exercise 9.2.2 This is a follow-up of the preceding exercise. Let 21,...,2, be historical data collected
over a time span influenced by inflation. We must then associate each claim z; with a price level Q; = 1+ I;
where I; is the rate of inflation. Suppose the claims have been ordered so that z; is the first (for which
I; = 0) and z, the most recent. a) Modify the data so that a model that can be fitted from them. b) Ensure
that the model applies to the time of the most recent claim. Imagine that all inflation rates Iy,..., I, can
be read off from some relevant index.

Exercise 9.2.3 Consider n; observations censored to the left. This means that each Z; is some b; or
smaller (by how much isn’t known). With Fy(z/f8) as the distribution function define a contribution to the
likelihood similar to right censoring in (?7?).

Exercise 9.2.4 Families of distribution with unknown lower limits b can be defined by taking Y = b+ Z
where Z starts at the orgin. Let ¥; = b+ Z; be an independent sample (i = 1,....n) and define

M, =min(Yy,...,Y},) and M, =min(Zy,...,2Z,).

a) Show that E(M,) = b+ E(M,). b) Also show that
Pr(M, > 2) = {1— F(z)}"  sothat  E(M.)= / (1— F(2)}" dz,
0

where F'(z) is the distribution function of Z [Hint: Use Exercise 777 for the expectation.]. ¢) With F(z) =
Fy(z/B) deduce that

E(My)=b+ /000{1 —Fo(z/B)}"dz=b+ ﬂ/ooo{l — Fy(2)}"dz

and explain how this justifies the bias correction (??) when b= M, is used as estimate for b.

Exercise 9.2.5 We shall in this exericise consider simulated, log-normal historical data, estimate skew-
ness through the ordinary estimate (??) and examine how it works when the answer is known (look it up
in Exercise 9.3.5 below). a) Generate n = 30 log-normal claims using § = 0 and 7 = 1 and compute the
skewness coefficient (??). b) Redo four times and remark on the pattern when you compare with the true
value. ¢) Redo a),b) when 7 = 0.1. What about the patterns now? d) Redo a) and b) for n = 1000. What
has happened?

Exercise 9.2.6 Consider the pure empirical model Z defined in (??). Show that third order moment
and skewness become

n _1 n o 3
v3(2) = - Z(zi -2)° so that skew(Z) = * Zz’:S13(Zz z) 7

where Z and s are sample mean and standard deviation.



Exercise 9.2.7 Consider as in (??) Z, = Z + hse where ¢ ~ N(0,1), s the sample standard deviation and
h > 0 is fixed. a) Show that

Pr(Zp <z|Z=z)=9® (z };Szz) (®(2) the normal integral).

b) Use this to deduce that

c) Differentiate to obtain the density function of Z, and show that it corresponds to the kernel density
estimate (?7?) in Section 2.2.

Exercise 9.2.8 Show that a Monte Carlo simulation of Z;, can be generated from two uniform variables U
and U3 through

i* « [1+nU7] followed by ZF + zi» + hs @~ H(UY)

where ®~!(u) is the percentile function of the standard normal. [Hint: Look up Algorithms 2.3 and 4.1].

Section 9.3
Exercise 9.3.1 The convolution property of the Gamma distribution is often formulated as follows. Start
with an independent Gamma sample Zy = £Zo1, . . ., Zn, = EZgy, With Zgy, . .., Zp, coming from the standard

Gamma(a). a) Verify that S = Z; + ...+ Z, = (n€)Zo where Zo = (Zou, - .., Zon)/n. b) Use the result on
Zy cited in Section 9.3 to deduce that S is Gamma distributed too. What are its parameters?

Exercise 9.3.2 The data below, taken from Beirlant, Teugels and Vynckier (1996) were originally com-
piled by The American Insurance Association and show losses (in the US) due to single hurricanes. They
apply to the period from 1949 to 1980 and have been corrected for inflation.

6.766 7123  10.562 14474 13.351 16.983  18.383 19.030  25.304
29.112 30.146  33.727  40.596  41.409 47.905  49.397 52.600  59.917
63.123  77.809 102.942 103.217 123.680 140.136 192.013  198.446 227.338

329.511 361.200 421.680 513.586 545.778 750.389 863.881 163.8000

The money unit is million US$, but they are for the year 1980 and would be much larger today. a) Fit a
log-normal and check the fit through a Q-Q plot. b) Repeat a), but now subtract b = 5000 from all the
observations prior to fitting the log-normal. ¢) Any comments?

Exercise 9.3.3 Alternatively the hurricane loss data of the preceding exercise might be described through
Gamma distributions. You may either use likelihood estimates (software needed) or the moment estimates
derived in Section 9.3; see (?7). a) Fit gamma distributions both to the orginal data and when you subtract
5000 first. Check the fit by Q-Q plotting. An alternatively is to fit transformed data. yi,...,yn.- One
possibility could be y; = log(z; — 5000) where 21, ..., 2z, are the original losses. b) Fit the Gamma model to
Y1,---,Yn and verify the fir though Q-Q plotting. ¢) Which of the models you have tested in this and the
preceding exercise should be chosen? Other possibiltities?

Exercise 9.3.4 Consider a log-normal claim Z = exp(6 + 7€) where ¢ ~ N(0,1) and 6 and 7 are pa-
rameters. a) Argue that skew(Z) does not depend on 6 [Hint: Use a general property of skewness.]. To
calculate skew(Z) we may therefore take § = 0, and we also need the formula E{exp(ac)} = exp(a?/2). b)
Show that

(Z _e'r2/2)3 — Z3 —3Z2€T2/2 +3Z€T2 _637'2/2



so that ¢) the third order moment becomes
v3(Z) = B(Z — 672/2)3 — 977/2 _ 357%/2 +263r2/2.
d) Use this together with sd(Z) = €™ /2v/e™® — 1 to deduce that

exp(37?) — 3exp(r?) + 2
KW = T ) -

e) Show that skew(Z) — 0 as 7 — 0 and calculate skew(Z) for 7 = 0.1, 1, 2. The value for 7 = 1 corresponds
to the density function plotted in Figure 2.4 right.

Exercise 9.3.5 This exericise is a follow-up of Exercise 9.2.5, but it is now assumed that that the un-
derlying model is known to be log-normal. The natural estimate of 7 is then 7 = s where s is the sample
standard deviation of y; = log(z1), - - -, yn = log(z,) where 21, ..., 2z, is the orginal log-normal claims. Skew-
ness is then estimated by inserting 7 for 7 in the skewness formula in Exercise 9.2.5 d). a) Repeat a), b)
and c) in the previous exercise with this new estimation method. b) Try to draw some conclusions about
the patterns in the estimation errors. Does it seem to help that we know what the underlying distribution is?

Section 9.4

Exercise 9.4.1 Let Z be exponentially distributed with mean £. a) Show that the over-threshold variable
Zj has the same distribution as Z. b) Comment on how this result is linked to the over-threshold model for
ordinary Pareto variables.

Exercise 9.4.2 Suppose you have concluded that the decay parameter a of a claim size distribution is
infinite so that the over-threshold model exponential. We can’t use the scale estimate (??) now. How will
you modify it? Answer: the method in Exercise 9.4.6.

Exercise 9.4.3 a) Simulate m = 10000 observations from a Pareto distribution with @ = 1.8 and § =1
and pretend you do not known the model they are coming from. b) Use the Hill estimate on the 100 largest
observations. c¢) Repeat a) and b) four times. Try to see some pattern in the estimates compared to the
true a (which you know after alll) d) Redo a), b) and ¢) with m = 100000 simulations and compare with
the earlier results.

Exercise 9.4.4 The Burr model, introduced in Exercise 2.5.4, had distribution function
Fl)=1-{1+(z/p)*}=%, z>0.

where 3, a; and ay are positive parameters. Sampling was by inversion. a) Generate m = 10000 observa-
tions from this model when a; = 1.5, as = 1.2 and § = 1. b) Compute & as the Hill estimate from the
100 largest observations. ¢) Comment on the discrepancy from the product agas. Why is this comparision
relevant? d) Compute B from the 100 largest simulations using the method in Exercise 9.4.2. €) Q-Q plot
the 100 largest observations against the Pareto distribuion with patarmeters & and B Any comments?

Exercise 9.4.5 a) Generate m = 10000 observations from the lognormal distribution with mean £ = 1
and 7 = 0.5. b) Compute the Hill estimate based on the 1000 largest observations ¢) Repeat a) and b) four
times. Any patterns? d) Explain why the value you try to estimate is infinite. There is a strong bias in
the estimation that prevents that to be reached. It doesn’t help you much to raise the threshold and go to
m = 100000!

Exercise 9.4.6 a) As in the preceding exercise generate m = 10000 observations from the lognormal
distribution with mean £ = 1 and 7 = 0.5. b) As £ use the sample mean of the 1000 largest observations



subtracted a suitable threshold (immediately below the smallest of them) and Q-Q plot the 100 largest
observations agains the exponential distribution with £ as mean. Comments?

Section 9.5
Exercise 9.5.1 Consider a mixture model of the form

Z=01-L)Z+ L+ Z) where Zy ~ Pareto(a,8), Pr(ly=1)=1-Pr(ly=0)=p

and Z is the empirical distribution function over z(y),..., 2(n,)- It is assumed that b > 2(,,) and that Z ,
Iy and Z; are independent. a) Determine the (upper) percentiles of Z. [Hint: The expression depend on
whether € < p or not.] b) Derive E(Z) and var(Z), [Hint: One way is to use the rules of double expectation
and double variance, conditioning on Ij.]

Exercise 9.5.2 a) Redo the following exercise when Z;, is exponential with mean ¢ instead of a Pareto
proper. b) Comment on the connection by letting & — oo and keeping £ = 8/(a — 1) fixed.

Exercise 9.5.3 a) How is Algorithm 9.2 modified when the over-threshold distribution is exponential with
mean {7 b) Implement the algorithm.

Exercise 9.5.4 We shall use the algorithm of the preceding exercise to carry out an experiment based
on the log-normal Z = exp(—7%/2+ 7€) where e ~ N(0,1) and 7 = 1. a) Generate a Monte Carlo sample of
n = 10000 and use those as historical data after sorting them as (1) < ... < z(,). In practice you would not
that they are log-normal, but assume that they are known to light-tailed enough for the the over-threshold
distribution to be exponential. The empirical distribution function is used to the left of the threshold. b)
Fit a mixture model by taking p = 0.05 and b = 2(g500) [Hint: You take the mean of the 500 obervations
above the threshold as estimate of the parameter £ of the exponential.]. ¢) Generate a Monte Carlo sample
of m = 10000 from the fitted mixture distribution and estimate the upper 10% and 1% percentiles from the
simulations. d) Do they correspond to the true ones? Compare with their ezact values you obtain from
knowing the underlying distribution in this laboratory experiment.

Section 9.6 .
Exercise 9.6.1 We shall in this exercise test the Hill estimate & defined in (??) and the corresponding
in (??) on the the Danish fire data (it can be downloaded from the file danishfire.txt.). a) Determine the
estimates when p = 50%, 10% and p = 5%. b) Compare with the values obtained by likelihood estimation
in Table 9.1.

Exercise 9.6.2 Consider historical claim data starting at b (known). A useful family of transformations is

(Z—-a)f -1
6

where 6 is selected by the user. a) Show that ¥ — log(Z — b) as § — 0 [Hint: L’hopital’s rule]. This shows
that the logarithm is a special case § = 0. The family is known as the Box-Cox transformation. We shall
use it to try to improve the fit of the models for the Danish fire data in Section 9.6. Download the data
from danishfire.txt. b) Use a = —0.00001 and # = 0.1 and fit the Gamma model to the Y-data. [Hint:
Either likelihood or moment, as in Section 9.3] ¢) Verfy the fit by Q-Q plotting. d) Repeat b) and ¢) when
6 = —0.1. e) Which of the transformations appears best, § = 0 (as in Figure 9.6.3) or one of those in this
exercise?

Y = for 0 #£0,

Exercise 9.6.3 Suppose a claim Z starts at some known value b. a) How will you select a in the Box-Cox
transformation of the preceding exercise if you are going to fit a positive family of distributions (gamma,
log-normal) to the transformed Y-data? b) The same question if you are going to use a model (for example
the normal) extending over the entire real axis.



