
1 Solvency and pricing

1.1 Introduction

The principal tasks of an actuary in general insurance is solvency and pricing. Solvency is finan-
cial control of liabilities under near worst-case scenarios. Target is then the (upper) percentiles
qǫ of the portfolio liability X , known as the reserve. Modelling and computation are required.
Examples have been spread over several of the previous chapters, but we shall now discuss general
approaches, into which the many details arising in practice can be fed. Evaluation of the reserve
takes the entire distribution of X . Monte Carlo is the obvious, general tool. A number of problems
(but not all) are well handled by simpler Gaussian approximations, sometimes with a correction
for skewness added. Computational methods for solvency are outlined in the next two sections.

The second main topic is the pricing of risk, not a purely actuarial subject. There is above
all a market side. A company will gladly charge what people are willing to pay! Strategic consid-
erations could influence pricing too, and there are overhead costs to cover. Yet a core is the pure
premium π = E(X) or Π = E(X ); i.e. the expected policy or portfolio payout during a certain
period of time. Evaluations of those are important not only as basis for pricing, but also as an aid
to decision making. Not all risks are worth taking! Pricing or rating methods in actuarial science
follow two main lines. The first one draws on claim histories of individuals. Those with good
records are to be considered lower risks (premium reduced), those with bad ones the opposite
(premium raised). The traditional approach is through the the theory of credibility, a classic
presented in Section 10.5. Alternatively, price differentials could be administered to groups. What
counts now is experience with the group which could be defined according to age, what kind of
car you own, where your residence are and so on. The natural method is regression, but credi-
bility may be used as well. Solvency and pricing under re-insurance schemes are treated at the end.

Numerical examples are used extensively to give a feel for numbers and for how sensitively eval-
uations depend on assumptions. The ideas of Chapter 7 are looming underneath. Liability over
longer time horizons is taken up in the next chapter.

1.2 Portfolio liabilities by simple approximation

Introduction

The portfolio loss X becomes Gaussian when the number of policies J →∞. This is a consequence
of the central limit theorem and leads to straightforward assessments of the reserve that avoid
detailed probabilistic modelling (more on that below). The method is useful due to its simplicity,
but the underlying conditions are too restrictive for it to be the only one. Normal approximations
underestimate risk for small portfolios and in branches with large claim severities. Some of that
is rectified by taking the skewness of X into account, leading to the so-called NP-version. The
purpose of this section is to review these simple approximation methods, show how they are put
to practical use and indicate their accuracy and range of application.

Normal approximations

Let µ be claim intensity and ξz and σz mean and standard deviation of the individual losses. If
they are the same for all policy holders, the mean and standard deviation of X over a period of
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length T become

E(X ) = a0J, and sd(X ) = a1

√
J ;

where

a0 = µTξz, and a1 = (µT )1/2(σ2
z + ξ2

z)
1/2; (1.1)

see Section 6.3 and Exercise 6.3.1. This leads to to the true percentile qǫ being approximated by

qNo

ǫ = a0J + a1φǫ

√
J (1.2)

where φǫ is the (upper) ǫ percentile of the the standard normal distribution. Estimates of µ, ξz

and σz are required for the coefficients a0 and a1, but the entire claim size distribution is not
needed. Detailed modelling can be avoided by using the sample mean and the sample standard
deviation as estimates ξ̂z and σ̂z. Another way is to fit parametric distributions and use their
mean and standard deviation.

The approximation (1.2) is nearly always valid for large portfolios even when µ, ξz and σz depend
on j. This is due to the Lindeberg extension of the cental limit theorem; see Appendix A.4. The
coefficients a1 and a1 are now changed to

a0 =
T

J

J∑

j=1

µjξzj and a1 =

√√√√T

J

J∑

j=1

µj(σ
2
zj + ξ2

zj). (1.3)

Check that they reduce to (1.1) when all parameters are equal! With µj, ξzj and σzj available on
file this method gives (when applicable) a quick appraisal of the reserve.

Still another version emerges when the policy holders of the portfolio are regarded as an in-
dependent random sample. Their parameters are then random too, and the coefficients a0 and
a1 are no longer valid in their previous form. The most important special case is when claim
frequencies µ1, . . . , µJ are drawn (independently of each other) from a distribution with common
mean and standard deviation ξµ and σµ. If the mean and standard deviation ξz and σz of the size
of claims are fixed, the coefficients (1.1) now become

a0 = ξµTξz, and a1 = T 1/2{ξµ(σ2
z + ξ2

z) + σ2
µξ2

z}1/2, (1.4)

see (??) and (??) in Section 6.3. The following example examines the numerical impact.

Example: Motor insurance

The Norwegian autmobile portfolio was introduced in Chapter 8. Its parameters are

ξ̂µ = 5.6%, σ̂µ = 2.0% and ξ̂z = 0.30, σ̂z = 0.35,
annual parameters unit: 1000 euro

where the model for claim intensity was identified in Section 8.3. Claim size excludes personal
injuries, and the parameters were obtained from almost 7000 incidents; see also Section 10.4.
This is enough to evaluate the reserve if the normal approximation is applicable. With J = 10000
policies (and T = 1) the coefficients a1 and a2 are obtained from (1.1) and (1.4). After having
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looked up the Gaussian percentiles this leads to the following assessments (in 1000 euro):

Fixed claim frequency Random claim frequency

1860, 1934 and 1860, 1935.
95% reserve 99% reserve 95% reserve 99% reserve

Note how little hetereogeneity among policy holders matters. The message was the same in
Section 6.3. Even a quite substantial variation among individuals (as in the present example) is
of no more than minor importance for the reserve.

The normal power approximation

Normal approximations are refined by adjusting for skewness in X . In actuarial science this is
called the normal power (or NP) approximation. In reality the NP method is the leading
term in a series of corrections to the central limit theorem, usually known as the Cornish-Fisher
expansion; see Feller (1970) for a probabilistic introduction and Hall (1992) for one in statistics.
The underlying theory is beyond the scope of this book, but a brief sketch of the structure is
indicated in Section 10.7. Only the pure Poisson model is considered below. The extension to the
negative binomial and other models is treated in Daykin, Pentikäinen and Pesonen (1994), but
as has been argued earlier, the practical impact is limited.

Let γz be the skewness coefficient of the claim size distribution. The refined approximation
then reads

qNP

ǫ = qNo

ǫ + a2(φ
2
ǫ − 1)/6 where a2 =

γzσ
3
z + 3ξzσ

2
z + ξ3

z

σ2
z + ξ2

z

; (1.5)

see Section 10.7 for justification. When (1.1) replaces the normal approximation qNo

ǫ , this yields

qNP

ǫ = a0J + a1φǫ

√
J + a2(φ

2
ǫ − 1)/6

the normal component NP correction
(1.6)

which is a series in falling powers of
√

J . The NP correction term is independent of portfolio size.

To use the approximation in practice skewness γz must be estimated in addition to ξz and σz (µ
as well). There is no new ideas in this. We may fit a parametric family to the historical data or
with plenty of data use the sample skewness coefficient introduced in Section 9.2.

Example: Danish fire claims

Consider a portfolio for which

µ̂ = 1% and ξ̂z = 3.385, σ̂z = 8.507, γ̂z = 18.74.
annual Unit: Million DKK

The parameters for claim size are those found for the Danish fire data in Chapter 9 (one million
DKK could be around 125 000 euro). With J = 1000 and J = 100000 policies the assessments of
the reserve becomes those in Table 10.1. On the the small portfolio on the left the NP correction
has considerable impact, raising the 99% the reserve by as much as 60%. What lies behind is
principally losses being strongly skewed towards the right (with skewness coefficient exceeding 18).
But when the number of policies is higher, the relative effect is smaller. With 100000 policies the
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Money unit: Million DKK

Portfolio size: J = 1000 Portfolio: J = 100000
95% reserve 99% reserve 95% reserve 99% reserve

Normal 80 100 3860 4060
Normal power 120 160 3900 4120

Table 10.1 Normal and normal power approximations to the reserve under
the Danish fire claims.

difference between the two methods is of minor importance and their almost common assessment
one to be trusted.

However, how about the small portfolio? The huge impact of the NP correction on the left
in Table 10.1 is ominous and should make us suspicous. Indeed, the more reliable Monte Carlo
assessments in the next section match neither. The approximations of this section is likely to
work best when the NP term isn’t a dominating one.

1.3 Portfolio liabilities by simulation

Introduction

Monte Carlo has several advantages over the methods of the preceeding section. It is more general
(no restriction on use), more versatile (easier to adapt changing circumstances) and better suited
for long time horizons (Chapter 11). But the method is slow computationally and doesn’t it
demand the entire claim size distribution whereas the normal approximation could do with only
mean and variance? The last point is deceptive. If the portfolio size is so large that the normal
distribution provides a reasonable approximation, the claim size distribution (apart from mean
and variance) doesn’t matter anyhow.

What about computational speed? Two methods were presented in Section 3.3. Algorithm 3.2
was the more general (risks could be unequal), but it went through the entire portfolio and might
appear slower than Algorithm 3.1. An experiment to measure performance is reported in Table
10.2 using a Fortran90 implementation, combining Algorithm 2.10 (Poisson) with Algorithm 4.1
(the empirical distribution function) and Algorithm 9.1a (Gamma). Detailed conditions were

µT = 5% and for losses empirical distribution or Gamma(α)
10000 historical claims α = 2

The results are above all testemony to how fast the empirical distribution function is sampled,
Gamma distributions being three or four times slower. The amount of computational work in

Office type computer with pentium III processor. Implementation: Fortran 77

Portfolio size: J = 1000 Portfolio: J = 100000
Algorithm 3.1 Algorithm 3.2 Algorithm3.1 Algorithm 3.2.

Emp. dist. 0.005 0.02 0.05 0.03
Gamma 5 17 37 51

Table 10.2 CPU time (seconds) per 1000 simulations of portfolio liabiltities.
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Distribution Distribution
Empirical distribution Algorithm 4.1 Weibull Exercise 2.5.1
Pareto mixing Algorithm 9.2 Fréchet Exercise 2.5.2
Gamma Algorithm 9.1a,b Logistic Exercise 2.5.3
Log-normal Algorithm 2.2 Burr Exercise 2.5.4
Pareto Algorithm 2.8

Table 10.3 List of claim size algorithms

generating the cost of claims is the same within both algorithms, and when this component dom-
inates, much of their differences are wiped out. Among the distributions used in this book the
Gamma distribution is the most labourious one to sample.

A skeleton algorithm

The portfolio liabiltity is a central issue in general insurance, and its seems worthwile to sketch
a general method that collect algorithms spread over several chapters. Suppose claim intensities
µ1, . . . , µJ are stored on file along with J different claim size distributions. If Algorithm 2.10 are
used for the Poisson sampling, the programming steps can be organized as follows:

Algorithm 10.1 Portfolio liabilities in the general case

0 Input: Poisson parameters λj = µjT (j = 1, . . . , J), claim size models, H(z).
1 X ∗ ← 0
2 For j = 1, . . . , J do

3 Draw U∗ ∼ uniform and S∗ ← − log(U∗)
4 Repeat while S∗ < λj

5 Draw claim size Z∗ %Might depend on j

6 X ∗ ← X ∗ + H(Z∗) % Add loss,

7 Draw U∗ ∼ uniform and S∗ ← S∗ − log(U∗) %Update for Poisson

8 Return X ∗

Poisson sampling has been integrated into the code. The algorithm goes through the entire
portfolio and add costs of settling incidents until the citerion on Line 4 is not satisfied. There are
many different algorithms for Line 5. Table 10.3 lists examples from this book.

Usually individual losses require most of the computer time. It is therefore little point in faster
Poisson samplers such as the guide tables (Section 4.2) and the Atkinson method (Section 2.6)
which would not bring worthwile improvements.

Danish fire data: The impact of the claim size model

The Danish fire data was examined in Section 9.6 and a number of models were tried. Some
worked better than others, and Table 10.4 shows how the fit or lack of it is passed on to the re-
serve. Models considered were the empirical distribution function without or with Pareto mixing
for the extremes, pure Pareto, Gamma and log-normal. All were fitted the historical fire claims
as described in Chapter 9. The portfolio size were J = 1000 with annual claim rate µ̂ = 1%,
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aEDF: The empirical distribuiton bThresholds are 50%, 25%, 10%, 5% cLog-transformed claims

EDFa EDFa with Pareto above bb Other claim size models
Reserve b=10 b=5.6 b=3.0 b=1.8 Pareto Gammac Log-normal
95% 72 100 104 105 100 71 94 49
99% 173 200 217 230 225 137 214 61

99.97% 330 590 870 1400 1750 900 1944 84

Table 10.4 Calculated reserves for the Danish fire data. Money unit: Million
DKK (about 8 DKK for one euro).

producing no more than 10 claims per year on average. Ten million simulations were used, making
Monte Carlo uncertainty very small indeed.

The situation is then identical to the one on the left in Table 10.1 and testfies to the difficulty
of calculating the reserves for small portfolios. On its own the empirical distribution function
underestimates risk, but it seems to work well when mixed with the Pareto distribution, and the
results are not overly dependent on where the threshold b is placed. Another well-fitting model
in Section 9.5 was the Gamma distribution on log-scale, and the reserve calculated under it does
not deviate much from Pareto mixing. Other models in Section 9.5 were grossly in error, and
produce strongly deviating results here. If you compare with the normal power method in Table
10.1 you will discover that it over-shoots at 95% and under-shoots at 99%.

Reserves at level 99.97% have been added. Luckily those figures are not in demand! The re-
sults are a mess of unstability, an example of the extreme difficulty of evaluations very far out
into the tails of a distribution where they become sensitive to modelling details. Although per-
centiles so close to one are rarely needed with insurance liabilities, they are used by rating bureaus
in finance.

1.4 Differentiated pricing through regression

Introduction

Very young male drivers or owners of fast cars are groups of clients notoriously more risky than
others, and it may not be unfair to charge them more. The technological development which makes
it easier to collect and store information with bearing on risk, can only further such practice. A
picture of how insurance incidents and their cost are connected to circumstances, conditions and
the people causing them must be built up from experience, and the principal tool is regression,
typically on log-linear form. The purpose of this section is to indicate how Poisson, Gamma and
log-normal regression from earlier chapters are put to work.

Explanatory variables (registrations and measurements) x1 . . . , xv are then linked to claim in-
tensity µ and mean loss per event ξz through

log(µ) = bµ0x0 + . . . + bµvxv and log(ξz) = bξ0x0 + . . . + bξvxv,

where bµ0, bµ1 . . . , and bξ0, bξ1, . . . are coefficients. By default x0 = 1, a convention introduced to
make formulae neater. The explanatory variables do not have to be the same for µ and ξz, but
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the mathematics becomes simpler to write down if they are, and we can always ‘zero’ irrelevant
ones away; i.e. take bξi = 0 if (for example) xi isn’t included in the regression for ξz. In motor
insurance (the example below) regression relationships are typically stronger for µ than for ξz.
Inserting the defining equations for µ and ξz into the pure premium π = µTξz yields

π = Teη where η = (bµ0 + bξ0)x0 + . . . + (bµv + bξv)xv,

and estimates for the coefficients must be supplied.

Estimates of the pure premium

The pure premium of a policy holder with x1, . . . , xv as explanatory variables is estimated as

π̂ = Teη̂ where η̂ = (b̂µ0 + b̂ξ0)x0 + . . . + (b̂µv + b̂ξv)xv.

Here b̂µi and b̂ξi are obtained from historical data, usually through statistical software. Assessment
of their error is provided too, and we must learn how this is passed on to π̂ itself. Bootstrapping
(Section 7.4) can be used (as always), but there is also a simpler normal technique. The estimated
regression coefficients are often approximately normal and therefore their sum η̂ as well. It follows
that π̂ is log-normal. This is a large-sample result which requires (in principle) much historical
data, but a robust attitude is here in order. High accuracy in error estimates isn’t that important.

There are two sets of estimated coefficients (b̂µ0, . . . , b̂µv ) and (b̂ξ0, . . . , b̂ξv
) coming from two

different regression analyses. It is usually unproblematic to assume independence between sets
so that (b̂µi, b̂ξj) is uncorrelated for all (i, j). If σµij = cov(b̂µi

b̂µj
) and σξij = cov(b̂ξi

b̂ξj
) are the

covariances within sets, then

E(η̂)
.
= η and var(η̂)

.
=

v∑

i=0

v∑

j=0

xixj(σµij + σξij) = τ2,

where the relationship on the right follows from the general variance formula for sums (rule (A20)
in Table A.2). These results are passed on to π̂ through the usual formulae for the log-normal
which yield

E(π̂)
.
= π exp(τ2/2) and sd(π̂)

.
= E(π̂)

√
exp(τ2)− 1.

Note that E(π̂) > π, and π̂ is biased upwards. but usually not by very much (see below). Bias
and standard deviation is estimated by

π̂(eτ̂2/2 − 1), π̂eτ̂2/2
√

eτ̂2 − 1
bias standard deviation

where τ̂2 =
v∑

i=0

v∑

j=0

xixj(σ̂µij + σ̂ξij).

Here σ̂µij and σ̂ξij are estimates of their variances/covariances (provided by standard software).
In the formula for τ̂2 take σ̂ξij = 0 or σ̂ξij = 0 if variable i or j isn’t included in the regression.

Designing regression models

Log-linear regression is a general tool that offers many possibiltities within a framework that adds
contributions on logarithmic scale. On the natural scale such specifications are multiplicative; i.e.

µ = µ0 · e(bµ1+bξ1)x1 · · · e(bµv+bξv)xv

baseline variable 1 variable v

where µ0 = ebµ0+bξ0 .
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aEstimated shape of the Gamma distribution: α̂ = 1.1

Intercept Age
≤ 26 > 26

Freq. -2.43 (.08) 0 (0) -0.55 (.07)
Sizea 8.33 (.07) 0 (0) -0.36 (.06)

Distance limit on policy (in 1000 km)
8 12 16 20 25-30 No limit

Freq. 0 (0) .17 (.04) 0.28 (.04) 0.50 (.04) 0.62 (.05) 0.82 (.08)
Sizea 0 (0) .02 (.04) 0.03 (.04) 0.09 (.04) 0.11 (.05) 0.14 (.08)

Geographical regions with traffic density from high to low

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
Freq. 0 (0) -0.19 (.0.4) -0.24 (.06) -0.29 (.04) -0.39 (.05) -0.36 (.04)
Sizea 0 (0) -0.10 (.0.4) -0.03 (.05) -0.07 (.04) -0.02 (.05) 0.06 (.04)

Table 10.5 Estimated coefficients of claim intensity and claim size for automobile
data (standard deviation in parenthesis). Methods: Poisson and Gamma regression.

Here µ0 is claim intensity when x1 = . . . = xv = 0, and the explanatory variables drive intensities
up and down compared to this baseline. As an example suppose x1 is binary, (0 for males and 1
for females). Then

µm = µ0e
(bµ2+bξv)x2 · · · e(bµv+bξv)xv and µf = µ0e

bµ1+bξ1e(bµ2+bξv)x2 · · · e(bµv+bξv)xv ,
for males for females

and µf/µm = ebµ1+bξ1 , is fixed and independent of all other covariates.

The female drivers of Section 8.3 who were more reliable than men when young and less when old
is not captured by this, but modifications are possible. One way is to design crossed categories.
An example was given in Section 8.4. The problem with such procedures is that the number of
parameters grows rapidly. Suppose there are three variables consisting of 2, 6 and 6 categories
(the example below). The total number of combinations is then 2 × 6 × 6 = 72, and the cross-
classification comprises 72 groups which may not appear much when the historical material is over
200000 policy years. On average there would be around 2500 policy years for each group, enough
for fairly accurate assessments of claim intensities by the elementary estimate (??). The problem
is that historical data often are very unequally divided among such groups which leads to much
random error in some of the estimates. Simplifications through log-linear regression enables us to
dampen random error; see also Exercise 10.4.3.

Example: The Norwegian automobile portfolio

A useful case for illustration is the Norwegian automobile portfolio of Chapter 8. There are around
100000 policies extending two years back with much customer turnover. Almost 7000 claims were
registered as basis for claim size modelling. Explanatory variables used are

• age (2 categories that were ≤ 26 and > 26 years)
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Age Distance limit on policy (in 1000 km)
80 120 160 200 250-300 No limit

≤ 26 years 365 (6.3) 442 (6.8) 497 (7.5) 656 (8.3) 750 (9.0) 951 (9.8)
> 26 years 148 (2.9) 179 (3.0) 201 (3.7) 265 (3.7) 303 (4.1) 385 (4.3)

Table 10.6 Estimated pure premium (in euro) for Region 1 of the
Scandinavian autmobile portfolio (standard deviation in parenthesis)

• driving limit (6 categories)
• geographical region (6 categories).

Driving limit is a proxy for how much people drive. Age is simplified drastically compared to
what would be done in practice. The regression equation for µ now becomes

log(µ) = bµ0 + bµ1x1 +
∑6

i=2 bµ1(i)x2(i) +
∑6

i=2 bµ1(i)x3(i),
age distance limit region

with a similar relation for ξz. Coding is the same as in Section 8.4. Note that x1 is 0 or 1 according
to the whether the individual is below or above 26. Regression methods used were Poisson (claim
frequency) and Gamma (claim size).

The estimated parameters in Table 10.5 vary smoothly with the categories. As expected, the
more people drive and the heavier the traffic the larger is the risk. Claim frequency fluctuates
stronger than claim size (coefficients larger in absolute value). Accidents of young people appear
to be both more frequent and more severe. The results in Table 10.5 yield estimates of the pure
premia for the 72 groups along with their standard deviation, as explained above. Those for the
region with heaviest traffic (Oslo area) is shown in Table 10.6. Estimates are smooth and might
be be used as basis for a pricing policy. The log-normal bias (see above) varied from 0.2 to 0.5,
much smaller than the standard deviation in parenthesis in Table 10.6.

1.5 Differentiated pricing through credibility

Introduction

The preceding section differentiated premium according to observable attributes such as age, sex,
geographical location and so on. Other factors with impact on risk could be personal ones that
are not easily measured or observed. Drivers of automobiles may be able and concentrated or
reckless and inexperienced. Such things influence driving and the accidents caused. Is it possible
to deduce the risk they lead to from people’s own track record? If so charge unequally! Similar
example are shops robbed repeatedly or houses and building frequently damaged. Is there a for-
mal basis for raising the premium?

The general problem is how to rate risks from past experience. In a sense that has been been
done that all along by fitting models for claim numbers and size to historical data, but focus is
now on the individual. The approach has much in common with the Bayesian ideas of Section 7.6.
Policy holders are seen as randomly selected and carriers of pure premia π = πpu that vary from
one person to another. Credibility theory provides a way of estimating them. This is a class
of estimation techniques where prior knowledge of how π varies over the portfolio is combined
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with individual claim records. Such methods can be administered to groups of policy holders too
which demands little new. Both viewpoints are pursued below.

Credibility: Approach and modelling

Credibility estimation assumes that each policy holder carries a list of attributes ω with impact
on risk. What they are is immaterial. The important thing is that they exist and have been
drawn randomly for each individual. Let X be the sum of claims from a certain future period,
say a year. Expectation and standard deviation are

π(ω) = E(X|ω) and σ(ω) = sd(X|ω).
conditional pure premium

(1.7)

where the notation reflects that both quantities depend on the underlying ω. We seek π = π(ω),
the conditional pure premium of the policy holder as basis for how much he is charged. The
same problem may be posed on group or portfolio level. Now the target is Π = E(X|ω) where
X is the sum of claims from many individuals and ω applies to all risks jointly, for example as
common, uncertain background conditions.

Let X1, . . . ,XK (policy level) or X1, . . . ,XK (group level) be past claims dating up to K years
back. The most accurate estimate of π and Π from such records are the conditional means

π̂ = E(X|x1, . . . , xK) and Π̂ = E(X|x1, . . . , xK)
policy level group level

(1.8)

where x1, . . . xK are the values of X1, . . . XK or X1, . . . ,XK ; see Section 6.4. We may also break
claims down on frequencies and size (this viewpoint will be introduced later), but for the moment
stay with the estimates (1.8). The issue is essentially the same on either level, and the argument
will be written out for single policies. As basic framework introduce the common factor model
of Section 6.2 where X1 . . . ,XK ,X are identically and independently distributed given ω. Surely
this is plausible? It won’t be true when underlying conditions change systematically during the
K periods in question; for credibility methods under such circumstances consult some of the ref-
erences in Section 10.8.

Complicated modelling can be avoided by leaning on the so-called structural parameters.
There are three of them; i.e.

ζ = E{π(ω)}, υ2 = var{π(ω)}, τ2 = E{σ2(ω)}, (1.9)

where ζ is the average pure premium over the entire population and υ and τ both represent
variation. The former is caused by diversity between individuals and the latter by the physical
processes leading to the incidents. These parameters determine mean and standard deviation of
X through

E(X) = ζ and sd(X) =
√

τ2 + υ2 (1.10)

which are verified by the rules of double expectation and double variance. Indeed,

E(X) = E{E(X|ω)} = E{π(ω)} = ζ,
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and

var(X) = E{var(X|ω)} + var{E(X|ω)} = E{σ2(ω)}+ var{π(ω)} = τ2 + υ2;

see also (??) in Section 6.3.

Linear credibility

Let π̂K be an estimate of π based on the claim record X1, . . . ,XK . The simplest procedure would
be to go linear. This means that the estimate is of the form

π̂K = b0 + b1X1 + . . . + bKXK ,

where b0, b1, . . . , bK are carefully selected coefficients. The fact that X1, . . . ,XK are condionally
independent with the same distribution forces b1 = . . . = bK = b, and the estimate becomes

π̂K = b0 + bX̄K where X̄K = (X1 + . . . + XK)/K. (1.11)

A natural way to proceed is to demand that b0 and b minimize the mean squared error E(π̂K−π)2.
This sets up a mathematical problem which yields the solution

π̂K = (1− w)ζ + wX̄K , where w =
υ2

υ2 + τ2/K
; (1.12)

see Section 10.7 where the argument is given. There is a close resemblance with the Bayes esti-
mate of the normal mean in Section 7.6. The weight w defines a compromise between the average
pure premium ζ of the population and the individual record of the policy holder. Note that w = 0
if K = 0; i.e. with no claim information available the best estimate is the population average.
Other interpretations are given among the exercises.

It is also proved in Section 10.7 that

E(π̂K − π) = 0 and that sd(π̂K − π) =
υ√

1 + Kυ2/τ2
. (1.13)

The linear credibility estimate is unbiased, and its standard deviation decreases with K.

Optimal credibility

The preceding estimate is the best linear method, but the Bayesian estimate (1.8) offers an im-
provement since it is optimal among all methods; see Section 6.4. Now the aggregate claims
x1, . . . , xK are broken down on annual frequencies n1, . . . , nK and individual losses z1, . . . , zn

where n = n1 + . . . + nK . The Bayes estimate of π = E(X) = E(N)E(Z) is

π̂ = E(X|n1, . . . , nK , z1, . . . , zn) = E(N |n1, . . . , nK)E(Z|z1, . . . , zn)

if claim numbers and losses are stochastically independent, and the estimation problem has been
decoupled into two separate ones. Both the claim intensity µ and the mean claim size ξz = E(Z)
may vary between individuals, but the diversity is often stronger for the former, and a possible
simplification is to fix ξz, the same for everybody. Then ξz = E(Z|z1, . . . , zn), and the preceding
estimate becomes

π̂ = ξzE(N |n1, . . . , nK), (1.14)

11



Credibility estimation for ξz is discussed in Exercise ??

We need a model for past and future claim numbers N1, . . . , NK , N . The natural one is of
the common factor type with the sequence conditionally independent given µ and each count
Poisson(µT ). As model for µ the customary choice is

µ = ξµG and G ∼ Gamma(α)

where G is a standard gamma variable with expectation one. It is verified in Section 10.7 that
the estimate (1.14) now becomes

π̂K = ζ
n̄ + α/K

ξµT + α/K
where n̄ = (n1 + . . . + nK)/K, (1.15)

and the population average ζ is adjusted up or down according to whether the average claim
number n̄ is larger or smaller than its expectation ξµT . The error is

E(π̂K − π) = 0 and sd(π̂K − π) =
ζ√

α + ξµKT
(1.16)

which is also proved in Section 10.7.

Credibility on group level

The preceding estimates apply to groups of policies as well. Suppose we seek Π(ω) = E(X|ω)
where X is the sum of claims from a group of policy holders. Now ω is common bacground
uncertainty, and the linear credibility estimate (1.12) is applied to the claim record X1, . . . ,XK

of the entire group. The structural parameters differ from what they were above. A reasonable
assumption is that individual risks are independent given ω. Then

E(X|ω) = Jπ(ω) and sd(X|ω) =
√

J σ(ω),

and the structural parameters (1.9) become Jζ, J2υ2 and Jτ2 instead of ζ, υ2 and τ2. It follows
from (1.12) that the best linear estimate is

Π̂K = (1− w)Jζ + wX̄K , where w =
υ2

υ2 + τ2/(JK)
, (1.17)

Here X̄K = (X1 + . . .+XK)/K is the average claim on group level. Its weight is much larger than
for individual policies and increases with the group size J .

Estimation error is from (1.13)

E(Π̂K −Π) = 0 and sd(Π̂K −Π) =
Jυ√

(1 + KJυ2/τ2
, (1.18)

and the method is unbiased as before. Note that

sd(Π̂K −Π)

sd(Π̂0 −Π)
=

1√
(1 + KJυ2/τ2

,
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Optimal Linear, σz = 0.1ξz Linear, σz = ξz

K = 0 K = 10 K = 20 K = 0 K = 10 K = 20 K = 0 K = 10 K = 20
200.0 193.2 187.1 200.0 193.3 187.2 200.0 196.5 193.2

Table 10.7 Standard deviations of credibility estimates under conditons in the text.

which decreases with KJ , and the gain from the claim record is much higher when J is large.
This is an important observation. It will be suggested below that the accuracy on individual level
might be poor, but it could be different for groups.

Similar results apply to the optimal credibility estimates (1.14). On group level the historical
claim numbers n1, . . . , nK are aggregates from J policies. Their distribution is now Poisson(JµT ),
and the only thing we have to do is to replace T with JT in (1.14) and (1.15); see Exercise ??.

How accurate is credibility estimation?

Consider esimation error when ξz is fixed for all policy holders and µ is random. With ξµ = E(µ),
σµ = sd(µ), ξz = E(Z) and σz = sd(Z) we have

π(µ) = E(X|µ) = µTξz and σ2(µ) = var(X|µ) = µT (ξ2
z + σ2

z);

see Exercise 6.3.1. The structural parameters (1.9) then become

ζ = ξµTξz υ2 = σ2
µT 2ξ2

z τ2 = ξµT (ξ2
z + σ2

z),

and when these expressions are inserted into in (1.13) right, we obtain for the linear credibility
estimate

sd(π̂K − π) =
σµTξz√

1 + KθzTσ2
µ/ξµ

where θz = ξ2
z/(ξ

2
z + σ2

z).

Accurate estimation requires the standard deviation to go down fast as K is raised, and much
hinges on the ratio σ2

µ/ξµ. Unfortunately the variability in µ has to be huge for this quantity to
be more than a small number.

Standard deviation for the optimal credibility estimate is (1.16) and is in Table 10.7 compared
with the linear version using the earlier automobile portfolio as test case. Then ξµ = 5.6% and
σµ = 2% annually (T = 1), and additional assumptions are ξz = 10000 and σz = 0.1ξz or σz = ξz.
The errors are huge when the mean annual claim ζ = 10000 · 0.056 = 560, and even 20 years of
experience with the same client hasn’t reduced uncertainty a lot. Nor does the optimal method
beat the linear one by much. The picture might not be the same on group level; see Exercise ??.

Finding the parameters

It remains to determine the parameters underlying the credibility estimates. For claim numbers
that was discussed in Section 8.3, and only the linear method need be considered here. Historical
data are then of the form

13



1 x11 . . . x1K1
x̄1 s1

· · · · · · · ·
· · · · · · · ·
J xJ1 . . . xJKJ

x̄J sJ ,
Policies Annual claims mean sd

with J policies that have been in the company K1, . . . ,KJ years. Annual claims from client
j are xj1, . . . , xjKj

, i.e. the j’th row of the table, from which the mean x̄j and the standard
deviation sj can be calculated. Let K = K1 + . . . + KJ . Unbiased, moment estimates of the
structural parameters are then

ζ̂ =
1

K
J∑

j=1

Kj x̄j, τ̂2 =
1

K − J

J∑

j=1

(Kj − 1)s2
j (1.19)

and

υ̂2 =

∑J
j=1(Kj/K)(x̄j − ξ̂)2 − τ̂2(J − 1)/K

1−∑J
j=1(Kj/K)2

; (1.20)

for verfication see Section 10.7. The expression for υ̂2 does not have to is positive. If it isn’t, the
pragmatic (and sensible) position is to assume υ = 0. Variation in the individual pure premium
over the portfolio is then too small to be detected.

1.6 Re-insurance

Introduction

Re-insurance was introduced in Section 3.2. Parts of primary risks placed with a cedent are
now passed on to re-insurers who may in turn go to other re-insurers leading to a global net-
work of risk sharers. Re-insurers may provide cover to incidents far away both geographically
and in terms of intermediaries, but for the original clients at the bottom of the chain all this is
irrelevant. For them re-insurance instruments used higher up are without importance as long as
the companies involved are solvent. These arrangements are ways to spread risk and may enable
small or medium-sized companies to take on heavier responsibilites than its capital base might
permit on its own.

Actuarial method don’t change much from ordinary insurance. The primary risks rest with ce-
dents, and the stochastic modelling is the same as before. Cash flows differ, but those are merely
modifications handled through fixed functions H(z) defining the payment rules and are easily
taken care of by Monte Carlo (Section 3.3). The economic impact may be huge, the methodolog-
ical not. This section outlines some of the most common contracts and indicate consequences for
pricing and solvency.

Types of contracts

Re-insurance is expenses shared between two or more parties. Contracts may apply to single
events or to sums of claims affecting the entire portfolio during a certain period of time. These
losses (denoted Z and X ) are then (in obvious mathematical notation) divided between re-insurer
and cedent according to

Zre = H(Z), Zce = Z −H(Z) and X re = H(X ), X ce = X −H(X ),
single events on portfolio level

(1.21)
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where 0 ≤ H(z) ≤ 1. Here Zce and X ce are the net cendent responsibility after accounting for the
re-insurance.

One of the most common contracts is the a × b type considered in Chapter 3. When drawn
up in terms of single events re-insurer and cedent responsibilities are

Zre =
0, if Z < a
Z − a, if a ≤ Z < a + b
b− a, if Z ≥ a + b,

and Zce =
Z, if Z < a
a, if a ≤ Z < a + b
Z − b, if Z ≥ a + b,

where Zre + Zce=Z. The lower bound a is the retention limit of the cedent who must cover all
claims below. Responsibility (i.e. Zce) appears unlimited, but in practice there is usually a maxi-
mum insured sum S that makes Z ≤ S. If b− a = S, the scheme gives good cedent protection. If
the upper bound b (the retention limit of the re-insurer) is infinite (rare in practice), the contract
is known as excess of loss. This type of arrangement is also used with X . Now X re and X ce are
related to X in a manner similar to the previous relationships for Zreand Zce, and if b is infinite,
the treaty is known as stopp loss.

Another type of contract is the proportional one for which

Zre = cZ, Zce = (1− Z) and X re = cX , X ce = (1− c)X
single events on portfolio level

(1.22)

Risk is now shared by cedent and re-insurer in a fixed proportion. Suppose there are J separate
re-insurance treaties, one for each of J contracts placed with the cedent. Such an arrangement is
known as quota share if the constant of proportionality c is the same for all policies. Consider
the opposite case where c = cj depends on the contract. Specifically, suppose that

cj = max(0, 1 − a

Sj
) so that Zre

j =
0 if a ≥ Sj

(1− a/Sj)Zj if a < Sj,
(1.23)

where Sj is the maximum insured sum of the j’th primary risk. This is known as surplus re-
insurance. Note that a (the cedent retention limit) does not depend on j. As Sj increases from
a, the re-insurer part grows.

Pricing re-insurance

Examples of pure re-insurance premia are

πre = µTξre for ξre = E{H(Z)} and Πre = E{H(X )}
single event contracts contracts on portfolio level

with Monte Carlo approximations

πre∗ =
µT
m

∑m
i=1 H(Z∗

i ) and Πre∗ =
1
m

∑m
i=1 H(X ∗

i ).

single event contracts contracts on portfolio level

Simulation is usually the simplest way if you know the ropes and often takes less time to imple-
ment than to work out exact formulae (and the latter may not be possible at all). On portfolio
level simulations X ∗ of the total portfolio loss (obtained from Algorithm 3.1 and 3.2) are inserted
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into the re-insurance contract H(x)

There is a useful formula for a × b contracts in terms of single events. If f(z) and F (z) are
density and distribution function of Z, then the mean re-insurance claim is

ξre =

∫ a+b

a
(z − a)f(z) dz +

∫
∞

a+b
bf(z) dz

=
a + b

−(z − a){1 − F (z)}|
a

+

∫ a+b

a
{1− F (z)} dz + b{1− F (a + b)} =

∫ a+b

a
{1− F (z)} dz

after integration by parts. Writing F (z) = F0(z/β) as in Section 9.2 yields

πre = µT

∫ a+b

a
{1− F0(z/β)}dz, (1.24)

which is is possible to evaluate under the Pareto distribution; i.e. when 1 − F0(z) = (1 + z)−α.
Then

πre = µT
β

α− 1

(
1

(1 + a/β)α−1
− 1

(1 + (a + b)/β)α−1

)
for α > 0, (1.25)

with special treatment being needed for α = 1 (Execrise ?).

The example

µT = 1%, a = 50, b = 500 α = 2, β = 100 gives πre = 0.50,

which was used to test Monte Carlo accuracy. With m = 100000 the answer was reproduced to
two decimal places. Three decimals would take one hundred times more; i.e. m = 10 million.

The effect of inflation

Inflation drives claims upwards into the regions where re-insurance treaties apply, and contracts
will be mis-priced if the re-insurance premium is not adjusted. The mathematical formulation
rests on the rate of inflation I which changes the parameter of scale from β = β0 to βI = (1+I)β0,
see Section 9.2, but the rest of the model is unchanged. Fot a × b contracts in terms of single
events (1.24) shows that that the pure premium πre

I under inflation is related to the original one
through

πre

I

πre

0

=

∫ b
a{1− F0(z/βI)}dz
∫ b
a{1− F0(z/β0)}dz

.

How other types of contracts react to inflation is studied among the exercises.

Consider, in particular, the case of infinite b with Pareto distributed claims. Then

πre

I

πre

0

= (1 + I)

(
1 + aβ−1

0

1 + aβ−1
0 /(1 + I)

)α−1
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Number of simulations: One million

Annual claim frequency: 1.05 Annual claim frequency: 5.25
Upper limit (b) 0 2200 4200 10200 0 2200 4200 10200
Pure premium 0 82 92 100 0 410 460 500
Cedent reserve 2170 590 510 480 6300 3800 1800 1200

Table 10.8 Re-insurance premium and net cedent reserve (1%) under the conditions
in the text. Money unit: Million NOK (8 NOK for 1 euro).

which is not negligable for values of α of some size; try some suitable values if I = 5%, for ex-
ample. The ratio is also an increasing function of α which means that the lighter the tail of the
Pareto distribution, the higher the impact of inflation.

That appears to be a general phenomenon. A second example is

Z0 ∼ Gamma(α) and ZI = (1 + I)Z0,
orginal model inflated model

and the pure premia πre

0 and πre

I can be computed by Monte Carlo. When the upper limit b is
infinite and I = 5%, the relative change (πre

I − πre

0 )/πre

0 was found to be

9% 23% 76%
α = 1 α = 10 α = 100

a median of Z0

and
17% 46% 169%
α = 1 α = 10 α = 100
a upper 10% percentile of Z0

Note the huge increase in the effect of inflation as α moves from the heavy-tailed α = 1 to
the light-tailed, almost normal α = 100.

The effect of re-insurance on the reserve

Re-insurance may lead to substantial reduction in capital requirements. The cedent company
loses money on average, but it can get around on less own capital, and its value per share could
be higher. A re-insurance strategy must balance extra cost against capital saved. An illustration
is given in Table 10.8. Losses were those of the Norwegain pool of natural disasters in Chapter 7
for which a possible claim size distribution is

Z ∼ Pareto(α, β) with α = 1.71 and β = 140.

The re-insurance contract was a a × b arrangement per event with a = 200 and b varied. Maxi-
mum cedent responsibility is S = 10200 for each incident. Monte Carlo was used for computation.

Table 10.8 shows cedent net reserve against the pure re-insurance premium. With claim fre-
quency 1.05 annually the 1% reserve is down from 2170 to about one fourth in exchange for the
premium paid. When claim freqeuency is five-doubled, savings is smaller in per cent, but larger
in value. How much does the cedent lose by taking out re-insurance? It depends on the deals
available in the market. If the premium paid is (1+γre)πre where πre is pure premium and γre the
loading, the average loss due to re-insurance is

(1 + γre)πre − πre = γreπre.
premium paid claims saved net loss
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In practice γre is determined by market conditions and may vary enormously in certain branches
of insurance. Going from barely zero to 100% and even 200% during a year or two are not unheard
of!

1.7 Mathematical arguments

Section 10.2

The normal power approximation: The NP approximation of Section 10.2 is a special case of
the Cornish-Fisher expansion (Hall 1992) which sets up a series of approximations to the percentile
qǫ of a random sum X . The first two are

qǫ
.
= E(X ) + sd(X )φǫ + sd(X )

1
6
(φ2

ǫ − 1)skew(X ).

normal approximation skewness correction
(1.26)

A fourth term on the right would involve the kurtosis, but that one isn’t much in use in prop-
erty insurance. The approximation become exact as the portfolio size J → ∞. Relative error
is proportional to J−1/2 (skewness omitted) and to J−1 (skewness included), which means that
skewness adjustments typically enhance accuracy considerably.

Suppose X is the total portfolio liability based on identical Poisson risks with intensity µ and
with ξz, σz and γz as mean, standard deviation and skewness of the claim size distribution. Mean,
variance and third order moment of X are then

E(X ) = JµTξz, var(X ) = JµT (σ2
z + ξ2

z), µ3(X ) = JµT (γzσ
3
z + 3σ2

zξz + ξ3
z),

where the third order moment is verified below (the other two were derived in Chapter 6, see
Exercise 6.3.1). Skewness is µ3(X )/var(X )3/2, and some straightforward manipulations yield

skew(X ) =
1

(JµT )1/2

γzσ
3
z + 3σ2

zξz + ξ3
z

(σ2
z + ξ2

z )3/2
.

The NP approximation (1.4) follows when the formulae for sd(X ) and skew(X ) are inserted
into (1.26).

The third order moment of X Let λ = JµT be the Poisson parameter for the total number
of claims N . The third order moment of µ3(X ) is then the expectation of

{X − λξz}3 = {(X −N ξz) + (N − λ)ξz}3 = B1 + 3B2 + 3B3 + B4

where

B1 = (X −N ξz)
3, B2 = (X −N ξz)

2(N − λ)ξz,
B3 = (X −N ξz)(N − λ)2ξ2

z , B4 = (N − λ)ξ3
z .

Expectations of all these terms follow by computing the conditional expectation given N and
applying the rule of double expectation. This is simple since X is a sum of identically and
independently distributed random variables. Start with B1. It follows from a result in Appendix
A that the conditional third order moment of X is N times the third order moment of Z. Hence

E(B1|N ) = N (EZ1 − ξz)
3 = Nγzσ

3
z which yields E(B1) = λγzσ

3
z .
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Similarly, from the sum of variance formula

E(B2|N ) = Nσ2
z(N − λ)ξz and E(B2) = E{N (N − λ)}σ2

zξz = λσ2
zξz.

It has here been utilized that E{N (N − λ)} = var(N ) = λ. For the two remaining terms

E(B3|N ) = 0 so that E(B3) = 0

and

E(B4) = E(N − λ)3ξ3
z = µ3(N )ξ3

z = λξ3
z

since µ3(N ) = λ; see Section 8.3. Tieing all these expectations together yields

E(X − λξz)
3 = E(B1) + 3E(B2) + 3E(B3) + E(B4) = λ(γzσ

3
z + 3σ2

zξz + ξ3
z )

which is µ3(X ).

Section 10.5

Statistical properties of X̄. The first part of this section derives the linear credibility estimate
and verifies its statistical properties. Three auxiliary results are

E(X̄) = ζ, var(X̄) = υ2 + τ2/K cov{X̄, π(ω} = υ2. (1.27)

The expectation follows from E(X̄) = E(X1) = ζ. To derive the variance note that

E(X̄ |ω) = E(X1|ω) = π(ω) and var(X̄ |ω) = var(X1|ω)/K = σ2(ω)/K,

and the rule of double variance yields

var(X̄) = var{E(X̄ |ω)}+ E{var(X̄|ω)} = var{π(ω)}+ E{σ2(ω)/K} = υ2 +
τ2

K
,

as asserted. Finally for the covariance

E{(X̄ − η)(π(ω) − η)|ω} = E{X̄ − η}{π(ω) − η} = {π(ω) − η}2,

and by the rule of double expectation

E{(X̄ − η)(π(ω) − η)} = E{π(ω) − η}2 = υ2,

and the term on the left is cov{X̄, π(ω)}. In the following we shall write π = π(ω).

Linear credibility Let π̂K be the estimate in (1.11). Then

π̂K − π = b0 + bX̄ − π = b0 − (1− bζ) + b(X̄ − ζ)− (π − ζ)

after a little reorganization. Hence

{π̂K − π}2 = {b0 − (1− bζ)}2 + b2(X̄ − ζ)2 + (π − ζ)2

+2{b0 − (1− bζ)}(X̄ − ζ) + 2{b0 − (1− bζ)}(π − ζ)− 2b(X̄ − ζ)(π − ζ),

19



and Q = E{π̂K − π}2 is calculated by taking expectation on both sides. Since E(X̄) = ζ and
E(π) = ζ, this yields

Q = (b0 − (1− bζ)2 + b2var(X̄) + var(π) + 0 + 0− 2bcov{X̄, π(ω)}

and after inserting (1.27) (middle and right) and υ2 = var(π), we obtain

Q = (b0 − (1− b)ζ)2 + b2(υ + τ2/K) + υ2 − 2bυ2

This is minimized by taking

b0 = 1− bζ and b = w =
υ2

υ + τ2/K
,

the solution of b0 being obvious and that for b being found by differentiation afterwards. This
yields the credibility estimate π̂K defined in (1.12).

The statistical properties Unbiasedness is a consequence of

E(π̂K) = E{(1 − w)ζ + wX̄} = (1− w)ζ + wE(X̄) = (1− w)ζ + wζ = ζ = E(π).

The variance of the error is calculated by inserting b0 = 1 − wξ and b = w in the expression for
Q. This yields

Q =

(
υ2

υ2 + τ2/K

)2

(υ2 + τ2/K) + υ2 − 2
υ2

υ2 + τ2/K
υ2 =

υ2τ2/K

υ2 + τ2/K
,

so that

E(π̂K − π)2 = Q =
υ2

1 + Kυ2/τ2

as asserted in (1.13).

Optimal credibility We must determine the distribution of µ given N1, . . . , NK . The prior
density function assumed for µ is

f(µ) = Cµα−1e−µα/ξµ

where C is a constant whereas the the claim numbers are conditionally independent and Poisson
given µ. Their joint density function is

f(n1, . . . , nK |µ) =
K∏

k=1

(
(µT )nk

nk!
e−µT

)
= Cµn1+...+nKe−µKT

where C (another constant) is an expression not depending on µ. Multiplying the pair of density
functions together yields the posterior density function p(µ|n1, . . . , nK) up to a constant. In other
words,

p(µ|n1, . . . , nK) = C
(
µα−1e−µα/ξµ

)
·
(
µn1+...+nKe−µKT

)
= Ceα+Kn̄−1e−µ(α/ξ+KT )
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where n̄ = (n1 + . . . + nK)/K. This is another Gamma density function with expectation

E(µ|n1, . . . , nK) =
α + Kn̄

α/ξµ + KT
= ξµ

n̄ + α/K

ξµT + α/K
.

Multiply with Tξz, and you get

π̂K = ζ
n̄ + α/K

ξµT + α/K
.

which is the credibility estimate (1.15).

Optimal credibility: Error

Note that

π̂K − π = ζ
n̄ + α/K

ξµT + α/K
− µTξz = ζ

(
n̄ + α/K

ξµT + α/K
− µ

ξµ

)
.

Since E(n̄|µ) = µT and var(n̄|µ) = µT/K, this implies that

E(π̂K − π|µ) = ζ

(
µT + α/K

ξµT + α/K
− µ

ξµ

)
and var(π̂K − π|µ) = ζ2 µT/K

(ξµT + α/K)2
,

and by the rule of double variance

var(π̂K − π) = ζ2

(
T

ξµT + α/K
− 1

ξµ

)2

σ2
µ + ζ2 ξµT/K

(ξµT + α/K)2
.

Under the model assumed σµ = ξµ/
√

α, and when this is inserted, the preceding expression
reduces to

var(π̂K − π) =
ζ2

α + KξµT
.

which is (1.16).

The estimates of ξ, τ and υ.

We shall examine the estimates (1.19) and (1.20). The principal part of the argument is to verify
unbiasedness. Firstly, since E(x̄j) = ζ and K1 + . . . + KJ = K we have

E(ζ̂) =
J∑

j=1

Kj

K E(x̄j) =
J∑

j=1

Kj

K ζ = ζ.

For τ we must utilize that s2
j is the ordinary empirical variance. Thus

E(s2
j |ω) = σ2(ω),

and by the rule of double expectation

E(s2
j ) = E{E(s2

j |ω)} = E{σ2(ω)} = τ2.
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Now (1.19) right yields

E(τ̂2) =
J∑

j=1

Kj − 1

K − J
E(s2

j) =
J∑

j=1

Kj − 1

K − J
τ2 = τ2.

Finally, note that

ζ̂ − ζ =
J∑

j=1

Kj

K (x̄j − ζ),

so that

Qυ =
J∑

j=1

Kj

K (x̄j − ζ̂)2 =
J∑

j=1

Kj

K (x̄j − ζ)2 − (ζ̂ − ζ)2,

and from (1.27) middle

E(x̄j − ζ)2 = υ2 +
τ2

Kj
.

Since

E(ζ̂ − ζ)2 = var(ζ̂) =
J∑

j=1

(
Kj

K

)2

var(xj) =
J∑

j=1

(
Kj

K

)2

(υ2 +
τ2

Kj
),

it now follows that

E(Qυ) =
J∑

j=1

Kj

K (υ2 +
τ2

Kj
)−

J∑

j=1

(
Kj

K

)2

(υ2 +
τ2

Kj
)

or since K1 . . . + KJ = K

E(Qυ) = υ2 +
J

Kτ2 − υ2
J∑

j=1

(
Kj

K

)2

− τ2

K .

Thus

E(Qυ) = 1−
J∑

j=1

(
Kj

K

)2

υ2 +
J − 1

M
τ2,

and the the estimate υ̂2 is determined by solving the equation

Qυ =
J∑

j=1

Kj

K (x̄j − η̂)2 = 1−
J∑

j=1

(
Kj

K

)2

υ̂2 +
J − 1

K τ̂2.

This yields the estimate (1.20) for υ̂, and the argument has also shown that υ̂ is unbiased.
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1.8 Furter reading

1.9 Exertcises

Exercise 1

Consider in the credibility estimate the weight w as defined in (??).

a) Show that w is an increasing function of υ. Explain why this had to be so.

b) What does the weight become when υ = 0 and when υ →∞? Interprete!

c) Show that w is a decreasing function of τ . There is a good good reason for that. What is
it?

d) What does the weight become when τ = 0 and when τ →∞? Explain once again.

Exercise 2

Consider a policy holder with annual claim frequency

µ = ξy,

where y is gamma distributed with density function

g(y) =
α

Γ(α)
yα−1 exp(−yα)

as in section 6.6. The client has been in the company for m years. The number of claims is Nk in
year k, k = 1, . . . ,m. he problem addressed is what we can say about the future number of claims
N given N1, . . . , Nm. Assumptions are the model above for µ and N1, . . . , Nm being conditionally
independent and conditionally Poisson distributed given µ. Thus

Pr(Nk = n) =
µn

n!
exp(−µ).

Note that this is the same type of conditions as in section 8.4.

a) Use Bayes’ formula (??) to show that the conditional density function of y given n1, . . . , nm is
of the form

const × ymn̄+α−1 exp{−y(α + mξ)}

where

n̄ =
1

m
(n1 + . . . + nm)

is the average number of claims per year in the past.

Introduce

x = y
α + mξ

α + mn̄
.
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b) Prove that the density function of x becomes

g(y) =
β

Γ(β)
xβ−1 exp(−xβ)

where

β = α + mn̄.

[Hint: Use exercise 2.?]

We have now established that

µ =

(
ξ
α + mξ

α + mn̄

)
x,

where x given n1, . . . , nm follows the gamma distribution above.

c) Use b) and a result in section 6.6 to conclude that N given n1 . . . nm is neagtively binomial
distributed.

d) From (??) and (??) conclude that

E(N |n1, . . . , nm) = ξ
α + mξ

α + mn̄

and

var(N |n1, . . . nm) = (1 + γ)ξ
α + mξ

α + mn̄
,

γ =
ξ

α + mξ

Exercise 3

This is a continuation of the preceding exercise. If we follow the notation of section 8.4, the claim
frequency of the policy holder is µ(ω) and its estimate from the past record is

µ̂(ω) = ξ
α + mξ

α + mn̄
.

a) When is the estimate above and below the portfolio mean ξ? Explain!

b) Show that

E{µ̂(ω)− µ(ω)} = 0

so that µ̂(ω) is unbiased.

c) Use the preceding exercise to deduce that

var{µ̂(ω)− µ(ω)} = µ̂(ω)

(
1 +

ξ

α + mξ

)
.
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This result suggests that the estimate µ̂(ω) is unlikely to very accurate.

d) Why is that? [Hint: Ignore the last term in the expression for var{µ̂(ω) and examine the
relative eroor.]

Explanatory variables could be the location of a house with respect to floods, storms or earth-
quackes or descriptions of individuals in terms of sex, age, claim record and other things. The
case used for illustration is a simplified one from motor insurance where premium is broken down
on age (2 categories), distance limit on policy (6 categories) and geographical region (also
6 categories). There are then 2× 6× 6 = 72 different groups. Why can’t simply straightforward
estimation techniques be applied 72 times, once to each group? What typically happens is il-
lustrated by the following estimates, obtained by applying the elementary estimate (??) to the
youngest age group of the most densely populated region:

Distance limit on policy (10000 km) 8 12 16 20 25-30 No limit
Estimatd annual claim intensity (%) 4.5 30.4 18.7 16.5 7.3 91.3

These estimates do not make sense! Random error is enormous despite the portfolio having
100000 policies (exposure two years on average). But they are very unevenly divided among the
72 groups and the smaller ones too thin to return reliable results. What regression techniqes do
is to present smoother (and without doubt truer) pictures of the reality.
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