
1 Monte Carlo thinking and technique

1.1 Introduction

This book sees simulation as a tool on par with mathematical modelling. To get started we need
both, and this chapter introduces both. The modelling part, though sketchy, is enough to see us
through a lot of problems in the next chapter. There is also a deliberate thought behind the man-
ner in which models are presented. The emphasis is on how they are simulated in the computer,
not on their probabilistic description. This is the constructive approach where mathematics
is developed in the way it is being used. One of the advantages is that we can move quicker be-
yond the most elementary. There will be more on the probabilistic side of things in Parts II and III.

Why Monte Carlo is such an important problem-solving tool was indicated in Chapter 1. Here
is the same argument phrased in a more abstract way. Typically a risk variable X is made up of
several (or many) random contributions. If so, it is usually hard, or even practically impossible,
to find its density function f(x) or distribution function F (x) through mathematical deductions.
That applies even when the random mechanisms involved are simple to write down and fully known.
Here is where Monte Carlo comes in. By generating simulations X∗

1 , . . . ,X
∗

m in the computer the
distribution of X is approximated. The first we must learn is how to pass from such a random
sample to statements on X and what error that brings. These issues are completely detached from
the concrete situation and are best discussed at a general level.

We start there (Section 2.2). Next comes construction and design of the simulation experiments
themselves. At the bottom is the notion of uniform random variables, in this book designated by
the letter U . Every value between 0 and 1 is then equally likely, meaning that the density function
is a horizontal straight line over the interval (0, 1) or (equivalently) that Pr(U ≤ u) = u. A Monte
Carlo simulation X∗ is a transformation of an independent, computer-generated sample U∗

1 , U∗

2 ,. . .
of such uniforms. In mathematically terms

X∗ = H(U∗

1 , U
∗

2 , . . .) (1.1)

where the function H is some mathematical expression or merely command lines in the computer.
The number of U∗

i may be very large indeed, sometimes even random (then determined by devel-
opment). Computer software contains procedures for generating uniform random variables, and we
might skip how it is done. Still, the issue is not without practical relevance and sometimes leads
to worthwhile gain in computer time. The generation of uniform random numbers is treated in
Chapter 4.

But do we have to be so basic? Sampling from the Gaussian and many other distributions are
available in software packages. Can’t we ignore their theory and proceed directly to how they are
used? A lot of work can be satsfactory carried out that way, yet sampling algorithms should be
studied. Otherwise we would be at the mercy of what software vendors have chosen to implement.
Consider large claims in property insurance. A popular model is the the Pareto distribution (you
see why in Chapter 9), but sampling software isn’t routinely available. We have to know how
ourselves. Then there is computational speed. Software packages have a tendency to run slowly.
By writing a program in, say the C language, you may easily enhance speed by a factor of ten
and more and even very much more if you invoke quasi-randomness (Section 4.7). Advantages:
Larger problems can be tackled. Money is saved if we can get around on one of the cheap compilers.
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1.2 How simulations are used

Introduction
Let X be the risk variable of interest. Typical quantities sought are expectation, standard deviation
and also percentiles and the probability density function. The objective of this section is to show
how these quantities are deduced from simulations X∗

1 , . . . ,X
∗

m, what error that entails and how
the sample size m is determined. We draw on statistics, using the same methods with the same
error formulas as for historical data. The simulation experiments below have useful things to say
about error in ordinary statistical estimation too.

Mean and standard deviation
Let ξ = E(X) be expectation and σ = sd(X) the standard deviation (or volatility of X. Their
Monte Carlo estimates are sample average and sample standard deviation

X̄∗ =
1

m
(X∗

1 + . . .+X∗

m) and s∗ =

√

√

√

√

1

m− 1

m
∑

i=1

(X∗

i − X̄∗)2. (1.2)

The statistical properties of the sample mean are the well-known

E(X̄∗ − ξ) = 0 and sd(X̄∗) =
σ√
m
, (1.3)

and Monte Carlo estimates of ξ are unbiased. In theory error may be pushed below any prescribed
level by raising m. An estimate of sd(X̄∗) is s∗/

√
m where σ in (1.3) right has been replaced by

s∗. This kind of uncertainty is often of minor importance compared to other sources of error; see
Chapter 7. If X̄∗ is a price, people may require high Monte Carlo accuracy nevertheless.

The statistical properties of s∗ may be less elementary than those of the sample mean, yet they are
simple enough. Approximately

E(s∗ − σ)
.
= 0 and sd(s∗)

.
=

σ√
2m

√

1 + κ/2, (1.4)

where κ is the kurtosis of X, see Exercise 2.2.6 (and also Appendix A) for the definition. This
result will be useful in Chapter 5 when the volatility of financial variables is estimated from histor-
ical data. For normal variables κ = 0. The approximations (1.4) are ‘asymptotic’ (become correct
as m → ∞) and are the start of mathematical series in powers of 1/

√
m, the next term being of

size 1/m; see Hall (1992). Such large sample results apply excellently to Monte Carlo experiments
where m is large.

Example: Financial returns
Let us examine how this machinery works in a transparent situation where it is not needed. Sample
mean and sample standard deviation calculated from m Gaussian simulations have in Figure 2.1
been plotted against m. The true values were ξ = 0.5% σ = 5% (which could be monthly returns
from equity investments). All experiments were completely redone with new simulations for each
m. That is why the curves jump so irregularly around the straight lines representing the true values.

The estimates tend to ξ and σ as m → ∞. That we knew. But actually the experiment tells
us something else. In relative terms the sample mean is less accurately estimated than the volatility.
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Figure 2.1 Sample mean and standard deviation against the number of simulations for a Gaussian

model. Straight lines are the true parameters.

Suppose the simulations had been historical returns of equity instead with mean expectation and
volatility estimated from them. Then, after 1000 months (about eighty years, a very long time)
the relative error in the sample mean is still, perhaps, two thirds of the true value! Errors of that
size would have a degrading effect on our ability to evaluate financial risk and makes the celebrated
Markowitz theory of optimal investment in Chapter 5 much harder to use. When financial deriva-
tives are discussed in Section 3.5 (and Chapter 14), it will emerge that the Black-Scholes-Merton
theory removes these parameters from the pricing formulas, doubtless one of the reasons for their
success.

This is an elementary case, and the main conclusion can be taken from the mathematics as well.
Indeed, from the left hand side of (1.3) and (1.4)

sd(X̄∗)

ξ
=
σ

ξ

1√
m

and
sd(s∗)

σ
=

√

1/2 + κ/4
1√
m

and the coefficient σ/ξ is more than ten times larger than the one on the right (for which κ = 0).
This explains why the estimate X̄∗ is so inaccurate. In finance it is nearly always like that.

Percentiles
The percentile qǫ is the solution of either either of the equations

F (qǫ) = 1− ǫ, F (qǫ) = ǫ,

depending on whether the upper or the lower version is sought. With insurance risk it is typically
the former, in finance the latter. In either the case the Monte Carlo approximation is obtained by
ordering the simulations. For the upper percentile the estimate is

q∗ǫ = X∗

(ǫm) for X∗

(1) ≥ . . . ≥ X∗

(m). (1.5)
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Figure 2.2 Estimated percentiles of simulated series against the number of simulations.

The lower one is exactly the same, except that the ranking on the right now is in ascending order.
A useful, approximate expression for the error is available. Indeed

E(q∗ǫ − qǫ)
.
= 0, sd(q∗ǫ )

.
=

aǫ√
m
, aǫ =

√

ǫ(1− ǫ)
f(qǫ)

, (1.6)

which are again asymptotic results as m → ∞. It is possible to evaluate f(qǫ) through density
estimation (see below) and insert the estimate into (1.6) for a numerical estimate of sd(q∗ǫ ).

The standard deviation depends on both the level ǫ and on the underlying density function. As ǫ
is lowered, the value of aǫ increases drastically to the extent that

aǫ →∞ as ǫ→ 0; (1.7)

see Section 2.7 for the proof. Very many more simulations are needed for small ǫ far out into the
tails of the distribution. That is no more than common sense. Perhaps it is less obvious that
heavy-tailed distributions require more simulations for the same accuracy than light-tailed ones. A
precise result is the following. Let q1ǫ and q2ǫ be percentiles under two different density functions
f1(x) and f2(x) and suppose the second one has heavier tails. This means that

q2ǫ

q1ǫ
→∞ as ǫ→ 0. (1.8)

This yields (see Section 2.7 for the proof)

f2(q2ǫ)

f1(q1ǫ)
→ 0 as ǫ→ 0 so that

a2ǫ

a1ǫ
=
f2(q2ǫ)

f1(q1ǫ)
→∞ as ǫ→ 0, (1.9)

where aiǫ =
√

ǫ(1− ǫ)/fi(qiǫ) are coefficients similar to aǫ in (1.6). Its right hand side establishes
that the second and more heavy-tailed distribution demands more simulations.
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Financial returns again
The experiments in Figure 2.1 have been repeated in Figure 2.2, but this time with the percentiles
obtained from (1.5). Mean and volatility were (as before) 0.5% and 5%, and the exact values are
the straight lines. The simulations are Gaussian on the left and the very heavy-tailed t-distribution
with 2 degrees on the right; see Section 2.3 below for the precise definition of the latter.

Earlier assertions on Monte Carlo error are confirmed. The discrepancies are larger for ǫ = 1%
than for ǫ = 5%, and they are strongly inflated for the heavy-tailed distribution on the right. To
appreciate these results, note the highly unequal scale of the vertical axes of the two figures which
is the reason why the 5% curve on the right looks less spread out than the one on the left is. We
have learned that the smaller ε and the heavier tails, the higher number of simulations.

Density estimation
Then there is the issue of estimating the density function f(x) itself. The simplest way may be
to read the simulations X∗

1 , . . . ,X
∗

m into statistical software. But even then an idea of how such
techniques operate is useful, all the more since there is a parameter to adjust. All plots of density
functions in this book are obtained through the Gaussian kernel method where we choose a
smoothing parameter h > 0 and use as estimate

f∗(x) =
1

m

m
∑

i=1

1

δ
ϕ

(

x−X∗

i

δ

)

where δ = hs∗. (1.10)

Here ϕ(x) = (2π)−1/2 exp(−x2/2) is the standard Gaussian density. As x is varied the esti-
mate (1.10) traces out a curve which is the average of m Gaussian densities with standard de-
viation δ centered at the m simulations X∗

i . The statistical properties of the estimate, as derived
in Chapter 2 in Wand and Jones (1995) is

E{f∗(x)− f(x)} .= 1

2
h2f ′′(x), and sd{f∗(x)} .= 0.4466

√

f(x)

hm
, (1.11)

where f ′′(x) is the second derivative. The estimate is biased! The choice of h is compromise be-
tween bias on the left (going down with h) and random variation on the right (going up). Usually
commercial software is equipped with a sensible default value. In theory the choice depends on m,
the ‘best’ value being proportional to the fifth root!

The curve f∗(x) will contain random bumps if h is too low. That emerges clearly on the left
in Figure 2.3 showing estimates based on m = 1000 simulations from the density function

f(x) =
1

2
x2 exp(−x).

The estimates become smoother with the higher values of h on the right, but now the bias tend to
drag the estimates away from the true function. It may for many purposes not matter too much if
h is selected a little too low. Perhaps h = 0.2 is a suitable choice in Figure 2.3. A sensible general
rule of the thumb for h could be the range 0.05 − 0.30, but, as remarked above, it also depend on
m. Other kernels than the Gaussian one can be used; see Wand and Jones (1995) or Scott (1992)
for monographs on density estimation.

Monte Carlo error and selection of m
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Figure 2.3 Kernel density estimates based on 1000 simulations from model in the text, shown as

the thick solid line in both plots.

The discrepancy between a Monte Carlo approximation and its underlying, exact value nearly
always becomes Gaussian as m → ∞. For the sample mean this follows from the central limit
theorem. Standard statistical large sample theory yields the result in most other cases; see the
reading list at the end of the chapter. Thus, a Monte Carlo evaluation ψ∗ of some quantity ψ is
roughly Gaussian with mean ψ and standard deviation of the form a/

√
m, where a is a constant.

That applied to all the examples above, except the density estimate (there is still a theory, but its
details are different; see Scott, 1992). We also saw how an estimate a∗ of a could be obtained from
the simulations. The interval

ψ∗ − 2
a∗√
m
< ψ < ψ∗ + 2

a∗√
m

(1.12)

contains ψ with approximately 95% confidence1 that can be reported as a formal appraisal of Monte
Carlo error. Here a∗ = s∗ when ψ is he mean and a∗ = (s∗/

√
2)

√

1 + κ∗/2 for the standard devia-
tion; see (1.3) and (1.4) right.

Such results can also be used for design. Suppose Monte Carlo standard deviation is required
be below some level σ0. If the equation a∗/

√
m = σ0 is solved for m, we get as lower bound

m =

(

a∗

σ0

)2

; (1.13)

i.e. the number of simulations must be at least that. For the idea to work you need the estimate
a∗. Often the only way is to run a preliminary round of simulations, estimate ζ, determine m and
complete the additional samples you need. That approach is a standard one with clinical trials
in medicine! With some programming effort it is possible to automatize the process so that the
computer takes care of it on its own.

1The precise 2.5% percentiles of the normal has been rounded off from 1.96 to 2.
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1.3 Gaussian based sampling and modelling

Introduction
The Gaussian (or normal) model is the most famous of all probability distributions, arguably the
most important one too. It is familiar from introductory courses in statistics, yet introduced from
scratch below. The goal of this section is to review a main tool of probabilistic modelling, but it also
an introduction to constructions in terms of stochastic representations. Defining models the way
they are simulated in the computer has several advantages. One of them is that elementary default
versions are so easy to extend. The present section is a case study in this line of thinking where
stochastic volatilites, heavy tails, correlated variables are hung on an original defintion of Gaussian
variables. Later (Chapter 5 and 13) further development introduces general normal variables and
time-dependent (or dynamic) phenomena affecting expectations, volatilties and correlations alike.

The normal family
A normal random variable with mean ξ and standard deviation σ may be written

X = ξ + σε, ε ∼ N(0, 1), (1.14)

where ε is the standard normal distribution, denoted N(0, 1). The Gaussian family of models is
defined by varying ξ = E(X) and σ = sd(X). Simulation is by means of X∗ = ξ + σε∗, and the
problem is how to generate ε∗. Let Φ(x) be the Gaussian integral2 and Φ−1(u) its inverse function
(same as qu for lower percentiles). It will be proved in Section 2.4 that ε can be represented as

ε = Φ−1(U), U ∼ uniform, (1.15)

and Gaussian variables can be sampled by combining (1.14) and (1.15). In summary:

Algorithm 2.1. Gaussian generator
0 Input: ξ and σ
1 Generate U∗ ∼ uniform
2 Return X∗ ← ξ + σΦ−1(U∗) %Or Φ−1(U∗) replaced by ε∗

generated by software directly

For this to be practical we must have a quick way to calculate Φ−1(u). Very accurate and simple
approximations are available; see Appendix C. For Jäckel (2002) this is actually the recommended
method for Gaussian sampling.

Modelling on logarithmic scale
Models constructed on logarithmic scale are common. Returns on equity (Section 1.3) is case in
point, the standard model being

log(1 +R) = ξ + σε, or R = exp(ξ + σε)− 1, (1.16)

where ε ∼ N(0, 1). Another example is the size of claims in property insurance, in this book
denoted by Z. The model now reads

log(Z) = ξ + σε, or Z = exp(ξ + σε). (1.17)

2Defined as

Φ(x) =

∫ x

−∞

1√
2π

exp(−1

2
y2)dy.
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Figure 2.4 Left: Normal and log-normal density functions for ξ = 0.005, σ = 0.05. Right: Log-

normal for ξ = −0.5, σ = 1.

Formulae for means and standard deviations are among the most important in the entire theory of
risk. Indeed

E(R) = exp(ξ +
1

2
σ2)− 1, and E(Z) = exp(ξ +

1

2
σ2), (1.18)

and

sd(R) = sd(Z) = E(Z){exp(σ2)− 1}1/2; (1.19)

see Section 2.7 for the proof.

Sampling is easy:

Algorithm 2.2 Log-normal sampling
0 Input: ξ, σ
1 Draw ε∗ ∼N(0,1) %For example: U∗ ∼ uniform, ε∗ ← Φ−1(U∗)

2 Return R∗ ← exp(ξ + σε∗)− 1, or Z∗ ← exp(ξ + σε∗).

The models (1.16) and (1.17) are called log-normal. Mathematical expressions for their density
function can be derived (you will find them in Appendix A). Two examples are plotted in Figure
2.4. Note the pronounced difference from left to right. Small σ (on the left) is appropriate for fi-
nance and yields a distribution close to the normal model, as predicted in Section 1.3. Higher values
of σ (on the right) leads to pronounced skewness, as is typical for large claims in property insurance.

Stochastic volatility
Financial risk is in many situations better described by introducing a separate stochastic model for
σ. This means that (1.14) is extended to

X = ξx + σε where σ = ξσ
√
Z (1.20)
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for a positive random variable Z. Typically Z is scaled so that E(Z) = 1 or E(Z2) = 1. Then
ξσ = E(σ) or ξσ = E(σ2) making Z responsible for random fluctuations around a mean value.
Since we are now dealing with two expectations, that of X has now been written ξx.

The effect of such a stochastic standard deviation or volatility is to make the tails of the dis-
tribution of X heavy. Why is that? Because the possibility of a very small/large ε and a very
large Z jointly must lead to higher discrepancy from the mean ξx than the normal can portray
on its own. Such models have drawn much interest in finance, and a dynamic version where σ is
linked to earlier values will be introduced in Chapter 13. Sampling is an extension of Algorithm 2.1:

Algorithm 2.3 Gaussian with stochastic volatility
0 Input: ξ, σ0, model for Z
1 Draw Z∗ and σ∗ ← ξσ

√
Z∗ %Many possibilities for Z∗; see text

2 Generate U∗ ∼ uniform.
3 Return X∗ ← ξx + σ∗Φ−1(U∗) %Or Φ−1(U∗) replaced by ε∗

generated by software directly

The most common choice for Z is

Z = 1/Y,

where Y is Gamma variable with mean 1; see Section 2.5. Now X follows a t-distribution (Chap-
ter 13). The example in Figure 2.2 right was run with Y = − log(U), which is an exponential
distribution (see Section 2.5). This is a very strong form of stochastic volatility. Even daily equity
returns typically have lighter tails than this.

Dependent normal pairs
Many situations demand normal variables that are correlated. Such models can for pairs X1 and
X2 be built up by applying (1.14) twice. We then write

X1 = ξx1 + σ1ε1
X2 = ξx2 + σ2ε2.

where
ε1 = η1

ε2 = ρη1 +
√

1− ρ2 η2,
(1.21)

and the sub-model on the right is the new feature. Here η1 and η2 are independent and N(0, 1)
variables, and they produce a second pair ε1 and ε2 also N(0, 1), but now linked through η1 in-
fluencing both. (for ε2 a slight argument is needed; see Appendix A). The co-variation between
ε1 and ε2 is controlled by the parameter ρ which concides with the ordinary correlation coefficient
(Section 5.4). Simulation is straightforward. Generate η∗1 and η∗2 by Gaussian sampling and insert
them for η1 and η2 in (1.21); see Algorithm 2.4 below for a formal organisation of commands.

The model provides one of the the most popular descriptions of pairs of equity returns R1 and
R2. Using the log-normal we then take

R1 = exp(X1)− 1, R2 = exp(X2)− 1,

where X1 and X2 are correlated Gaussians as above. Simulations of (R1, R2) based on ξx1 = ξx2 =
0.5% and σ1 = σ2 = 5% (monthly returns on equity) have been plotted in Figure 2.5. Variation of
ρ captures different degrees of co-variation.
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Figure 2.5 Joint plot of 100 pairs of simulated equity returns; from the ordinary log-normal model

described in the text.

Dependence and heavy tails
Returns of equity investments may be both dependent and heavy-tailed. Can that be handled?
Easily! We simply combine (1.20) and (1.21), rewriting the latter as

X1 = ξx1 + σ1η1, σ1 = ξσ1

√

Z1 (1.22)

X2 = ξx2 + σ2(ρη1 +
√

1− ρ2 η2), σ2 = ξσ2

√

Z2.

Here ξσ1 and ξσ2 are fixed parameters and Z1 and Z2 are positive random variables playing the
same role as Z in (1.20).

It is common to take Z1 = Z2 = Z assuming fluctuations in σ1 and σ2 to be in perfect syn-
chrony. The shape of the density functions of X1 and X2 must then be equal and non-normal to
exactly the same degree. This has no special justification beyond mathematical convenience, but it
does give joint density function of (X1,X2) a ‘nice’ mathematical form, see Appendix A. Exercise
2.4.5 play with an alternative. The effect on financial returns has been indicated in Figure 2.6
which has been set up from the same model as in Figure 2.5 except that now

Z1 = Z2 = 1/{− log(U)}.

What is the change brought by stochastic volatility? When you take into account that axes scales
are almost tripled compared to what they were in Figure 2.5, it becomes clear that strongly devi-
ating returns has become much more frequent. By contrast the degree of dependence seem to have
remained unchanged. It is in Exercise 5.2.7 proved that it must be so.

Equi-correlation models
Many interacting Gaussian variables start out as above by taking

Xj = ξxj + σjεj j = 1, . . . , J (1.23)

where ε1, . . . , εJ are normal N(0, 1). Their general formulation is a somewhat complicated issue
and is dealt with in in Section 5.4. A simple special case which will be used in the next chapter is
the equi-correlation model for which

εj =
√
ρ η0 +

√

1− ρ ηj j = 1, . . . , J. (1.24)
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Figure 2.6 Joint plot of 100 simulated financial returns; from stochastic volatility model (same

as in Figure 2.5 otherwise) described in the text.

Here η0, η1, . . . , ηJ are independent and N(0, 1), and η0 is responsible for relationships between all
pairs of variables (εi, εj). The parameter ρ (must be ≥ 0) is still a correlation coefficient, this time
a common one for all pairs.

How correlated returns are generated under this model is summarized by the following algorithm:

Algorithm 2.4 Financial returns under equi-correlation
0 Input: ξx1, . . . , ξxJ , σ1, . . . , σJ , c1 ←

√
ρ, c2 ←

√
1− ρ

1 Generate η∗0 ∼ N(0, 1) %Common stochastic factor

2 For j = 1 . . . , J do
3 Generate η∗ ∼ N(0, 1)
4 ǫ∗ ← c1η

∗

0 + c2η
∗ %Randomness in j’th return

5 R∗

j ← exp(ξxj + σjε
∗)− 1 %Stochastic volatility: Draw Z∗ and

let σ∗

j ← ξσj

√
Z∗; use it for σj

6 Return R∗

1, . . . , R
∗

J

How heavy-tailed models are included is indicated in the comment to Command 4. Some of the
exercises at the end of the chapter play with this algorithm.

1.4 Creating sampling algorithms

Introduction
The simulation algorithms in the two preceding sections were (largely) model relationships copied in
the computer. This is indeed the most common way stochastic simulation algorithms are developed
and has influenced how models are presented. But we also need a toolbox of basic sampling
techniques to work from. That is definitely an area for the clever, full of ingenious tricks. An
example is the Box-Muller representation of Gaussian random variables. Suppose U1 and U2 are
independent and uniform. Then

η1 =
√

−2 log(U1) sin(2πU2), η2 =
√

−2 log(U1) cos(2πU2) (1.25)

are both N(0, 1) and also independent; see Devroye (1986) for a proof. This gives the Box-Muller
generator:
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Algorithm 2.5 Independent, normal pairs
1 Generate U∗

1 , U∗

2 ∼ uniform

2 Y ∗ ←
√

−2 log(U∗

1 )

3 Return η∗1 ← Y ∗ sin(2πU∗

2 ), η∗2 ← Y ∗ cos(2πU∗

2 )

On output η∗1 and η∗2 are independent and N(0, 1). The algorithm is, despite its elegance, not
particularly fast, but worth including for its simplicity (despite reservations in Jäckel, 2002). It is
also an illustration of the inventiveness of sampling theory. Many useful procedures are ad-hoc and
like the Box-Muller method adapted to concrete situations.

The intent here is not even remotely one of providing justice to the vast subject of generating
random variables with given distributions. For that Devroye (1986) is still a good reference; see
also Section 2.7. Our purpose is to select methods of practical usefulness in actuarial science. Ac-
tually the sampling procedures reviewed in the present chapter will take us far if we know how
to apply and combine them them intelligently (more in Chapter 4). We are going to lean on two
general techniques. The first is:

The inversion method
It was claimed above that a normal variable is generated through (1.15). This is actually a general
sampling method known as inversion. Let F (x) be a strictly increasing distribution function
with inverse F−1(u). Define

X = F−1(U) or X = F−1(1− U), U ∼ Uniform. (1.26)

Consider the version on the left for which U = F (X). Note that

Pr(X ≤ x) = Pr{F (X) ≤ F (x)} = Pr{U ≤ F (x)} = F (x),

since Pr(U ≤ u) = u. In other words, X defined by (1.26) left has the distribution function F (x),
and we have a general technique for the generating random variables. The other one based on 1−U
is justified by U and 1− U having the same distribution. In summary:

Algorithm 2.6 Sampling by inversion
0 Input: The percentile function F−1(u)
1 Draw U∗ ∼ uniform
2 Return X∗ ← F−1(U∗) or X∗ ← F−1(1− U∗)

In either case X∗ has the desired distribution function F (x). The two versions represent a so-
called antitetic pair. It has a speed-enhancing potential that will be discussed in Chapter 4.

Whether Algorithn 2.6 is practical depends on the ease with which the percentile function F−1(u)
can be computed. That condition is satisfied for Gaussian variables, and Algorithm 2.1 has now
been justified. There are many additional examples in Section 2.5; first a second general technique.

The acceptance-rejection method
This is an example of a so-called random stopping rule and is more subtle than inversion. The
idea is to select a density function g(x) which is convenient to sample from. Simulations from f(x)
can still be obtained if we discard those that do not meet a certain acceptance criterion A. Magic?

12



It works like this. Let g(x|A) be the density function of the simulations kept. By Bayes’ formula
(Appendix A)

g(x|A) =
Pr(A|x)g(x)

Pr(A)
, (1.27)

and we must specify Pr(A|x), i.e. the probability that X = x drawn from g(x) is allowed to stand.
Suppose we have been able to find a constant M such that

M ≥ f(x)

g(x)
, all x. (1.28)

Let us examine what happens if x is accepted whenever a uniform random number U satisfies

U ≤ f(x)

Mg(x)
,

where the right hand side is always less than one. Now

Pr(A|x) = Pr

(

U ≤ f(x)

Mg(x)

)

=
f(x)

Mg(x)
,

which in combination with (1.27) yields

g(x|A) =
f(x)

MPr(A)
.

The denominator must be one (otherwise g(x|A) won’t be a density function), and so

g(x|A) = f(x) and Pr(A) =
1

M
. (1.29)

We have indeed obtained the right distribution. In summary the algorithm runs as follows:

Algorithm 2.7 Rejection-acceptance sampling
0 Input f(x), g(x), M
1 Repeat
2 Draw X∗ ∼ g(x)
3 Draw U∗ ∼ uniform
4 If U∗ ≤ f(X∗)/Mg(X∗) then

stop and return X∗.

The expected number of repetitions equals 1/Pr(A) and hence M by (1.29) right. Good de-
signs are those with low M . Some of the smartest sampling algorithms in the business are of the
acceptance-rejection type; notably Algorithms 2.11 and 2.12 below.

13



1.5 Some standard distributions

Introduction
The normal and log-normal models were reviewed above. With the four additional distributions
introduced in this section they form a toolkit we shall rely on all through Part I. The presentation
below is very sketchy, concentrating on mean and standard deviation and on how sampling is car-
ried out. Poperties and genesis of these distributions are covered in Parts II and III where other
models will be introduced too; see also some of the exercises to this section.

The Pareto distribution
Random variables X with density function

f(x) =
α/β

(1 + x/β)1+α
, x > 0 (1.30)

are Pareto distributed. Here α > 0 and β > 0 are positive parameters and negative values for X
do not occur. The model is extremely heavy-tailed and often serves as model for large claims in
property insurance; more on that in Chapter 9. Mean and standard deviation are

E(X) =
β

α− 1
, α > 1 and sd(X) = E(X)

√

α

α− 2
, α > 2. (1.31)

They do not exist (i.e. is infinite) for other values of α than those shown. Real phenomena where
α seems to be between 1 and 2 will be encountered later.

Distribution function and its inverse of (1.30) are

F (x) = 1− (1 + x/β)−α, x > 0 and F−1(u) = β{(1 − u)−(1/α) − 1}, (1.32)

where the latter is found by solving the equation F (x) = u. This yields the following Pareto gen-
erator from the second version of the inversion algorithm:

Algorithm 2.8 Pareto generator
0 Input α and β
1 Generate U∗∼ uniform
2 Return X∗ ← β{(U∗)−(1/α) − 1} %X∗ Pareto distributed

The exponential distribution
Suppose β = αξ is inserted into the Pareto density (1.30) while ξ is kept fixed and α is allowed to
become infinite. Then

f(x) =
ξ−1

(1 + (x/ξ)α−1)1+α
→ ξ−1

exp(x/ξ)
, as α→∞,

and we have obtained the exponential density function

f(x) =
1

ξ
exp(−x/ξ), x > 0. (1.33)

Mean and standard deviation are

E(X) = ξ and sd(X) = ξ, (1.34)
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and for the distribution and percentile functions we have the expressions

F (x) = 1− exp(x/ξ) and F−1(u) = −ξ log(1− u).

Inversion (Algorithm 2.6) yields the following sampling method:

Algorithm 2.9 Exponential generator
0 Input ξ
1 Draw U∗ ∼ uniform
2 Return X∗ ← −ξ log(U∗) %X∗ exponential

There is a connection to Algorithm 2.8. Insert β = αξ on the last line there and let α → ∞.
The fact that the exponential distribution is a limiting member of the Pareto family is of some
importance with extremes; see Section 9.4.

The Poisson distribution
Suppose X1, X2,. . . are independent and exponentially distributed with ξ = 1. It can then be
proved (see Section 2.7 and also Exercise 8.2.4) that

Pr(X1 + . . .+Xn < λ ≤ X1 + . . . +Xn+1) =
λn

n!
exp(−λ) (1.35)

for all n ≥ 0 and all λ > 0. The right hand side are Poisson probabilities; i.e defining the density
function

Pr(N = n) =
λn

n!
exp(−λ), n = 0, 1, . . . (1.36)

This model is the central one for claim frequency in property insurance, and a lot will be said about
it in Chapter 8. Its mean and variance are equal; i.e.

E(N) = λ and sd(N) =
√
λ. (1.37)

The main point at the moment is that (1.35) tells us how Poisson variables are sampled. Utilize
that Xj = − log(Uj) is exponential if Uj is uniform and follow the sum X1+X2+ . . . until it exceeds
λ, in other words:

Algorithm 2.10 Poisson generator
0 Input λ,Y ∗ ← 0
1 For n = 1, 2, . . . do
2 Draw U∗ ∼ uniform and Y ∗ ← Y ∗ − log(U∗)
3 If Y ∗ ≥ λ then

stop and return N∗ ← n− 1.

This is a random stopping rule of a kind different from acceptance-rejection. We count how long it
takes for (1.35) to be satisfed and return the number of trials minus one. This simple procedure is
often good enough

More on Poisson sampling
Poisson counts are central in most evaluations of risk in property insurance (all in this book) and
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their sampling important. Yet very often the simple Algorithm 2.10 is good enough (to see why
consult Section 10.3). However, it does slow down for large λ and if speed is critical, we may turn
to the method of Atkinson (1979) which was constructed to deal with that issue precisely:

Algorithm 2.11 Atkinson’s Poisson generator
0 Input: c← 0.767 − 3.36/λ, a← π/

√
3λ, b← λa, d← log(c/a) − λ

1 Repeat

2 Repeat
3 Draw U∗ ∼ uniform and X∗ ← {b− log(1/U∗ − 1)}/a

until X∗ > −0.5

4 N∗ ← [X∗ + 0.5] and draw U∗ ∼ uniform
5 If b− aX∗ − log{{1 + exp(b− aX∗)}2/U∗} < d+N∗ log(λ)− log(N∗!)

stop and return N∗

Before running the algorithm it is necessary compute (recursively!) and store the sequence log(n!)
up to some number the Poisson variable has microsopic chances to exceed (5λ could be a sensi-
ble choice). The method is derived through rejection sampling; see Cassela and Robert (1998).
Atkinson recommends that λ > 30 for his procedure to be used. Devroye (1986) contains other
possibilities; see also the discrete sampling procedures in Section 4.2.

The Gamma distribution
One of the most important models in actuarial science is without doubt the Gamma family of
distributions which plays several differerent roles. The probability density function is

f(x) =
(α/ξ)α

Γ(α)
xα−1 exp(−αx/ξ), x > 0. (1.38)

Here Γ(α) is the so-called Gamma function3. Mean and standard deviation are

E(X) = ξ, and sd(X) = ξ/
√
α. (1.39)

Following Mccullagh and Nelder (1992) expectation is one of the two parameters (often Gamma
models are presented slightly different.) The case ξ = 1 will be called the standard Gamma and
denoted Gamma(α).

The Gamma distribution isn’t that easy to sample. Its percentile function is complicated com-
putationally, and unlike the normal case there isn’t simple approximations to drawn on. Inversion
sampling is not promising, and neither are there convenient stochastic representations. Cases like
those are candidates for acceptance-rejection. Algorithm 2.11 is a simple outcome of that idea. Let
ξ = 1 and generate proposals through

g(x) = exp(−x), x > 0.

3It is defined through

Γ(α) =

∫

∞

0

xα−1 exp(−x) dx

and coincides with the factorials when α is an integer; i.e. Γ(n) = (n− 1)!.
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When ξ = 1, the ratio f(x)/g(x) attains its maximum at x = 1 (differentiate and see) and so

M =
αα

Γ(α)
exp(−α+ 1) which yields

f(x)

Mg(x)
= exp{(α− 1)(log(x)− x)},

and we are lead to the following algorithm:

Algorithm 2.12 Simple Gamma generator for α ≥ 1
0 Input: α and ξ
1 Repeat
2 Draw U∗ ∼ uniform and X∗ ← − log(U∗) %Proposal (the exponential)

3 Draw U∗ ∼ uniform
4 If log(U∗) ≤ (α− 1)(log(X∗)−X∗) then %The test is carried out here

X∗ ← ξX∗, stop and return X∗

The method works for moderate α ≥ 1. When α > 100 say, the acceptance rates fall below
10%, and the method becomes slow.

More on Gamma sampling
Vast improvements over Algorithm 2.12 are possible through more subtle proposal distributions.
The following procedure, justified in Devroye (1986), is effective for all α ≥ 1:

Algorithm 2.13 Fast Gamma generator for α ≥ 1
0 Input: ξ, α and b = α− 1, c = 3α− 0.75.
1 Repeat
2 Sample U∗ ∼ uniform
3 W ∗ ← U∗(1− U∗), Y ∗ ←

√

c/W ∗(U∗ − 0.5), X∗ ← b+ Y ∗

6 If X∗ > 0 then
7 Sample V ∗ ∼ uniform(0, 1)
8 Z∗ ← 64(W ∗)3(V ∗)2

9 If Z∗ ≤ 1− 2(Y ∗)2/X∗ or if log(Z∗) ≤ 2{b(log(X∗/b)− Y ∗)}
then stop and return X∗ ← ξX∗/α.

The loop is repeated until the stop criterion is satisfied.

The case α < 1 is referred back to 1 + α through Stuart’s theorem; i.e.

X = Y U1/α ∼ Gamma(α) if Y ∼ Gamma(1 + α), U ∼ Uniform;

see Devroye (1986). Commands in the computer are summarized as follows:

Algorithm 2.14 Gamma generator for α < 1
0 Input: ξ, α
1 Sample Z∗ ∼ Gamma(1 + α) %From Algorithm 2.11 or 2.12

2 Sample U∗ ∼ uniform
3 Return Z∗ ← ξZ∗(U∗)1/α

Together Algorithms 2.12 and 2.13 offer rapid sampling of general Gamma variables.
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1.6 Mathematical arguments

Section 2.2
The limit relationship (1.9) Only the upper percentiles will be considered; the lower ones are
similar. Suppose

q1ǫ

q2ǫ
→ 0, as ǫ→ 0,

which is the condition (1.8) in Section 2.2. Note that both numerator and denominator tend to
zero. Hence, l’Hôpital’s rule yields

∂q1ǫ

∂ǫ
∂q2ǫ

∂ǫ

→ 0, as ǫ→ 0.

Differentiate both sides of Fi(qiǫ) = 1− ǫ with respect to ǫ, i = 1, 2. By the chain rule

f1(q1ǫ)
∂q1ǫ

∂ǫ
= −1, and f2(q2ǫ)

∂q2ǫ

∂ǫ
= −1, (1.40)

so that

f2(q2ǫ)

f1(q1ǫ)
=

∂q1ǫ

∂ǫ
∂q2ǫ

∂ǫ

→ 0, as ǫ→ 0 and
a1ε

a2ε
=
f(q2ǫ)

f(q1ǫ)
,

as claimed in (1.9).

The limit relationships (1.7) Again only the upper percentile is treated. Note that aǫ in (1.6)
right can be rewritten

aǫ =

√

1− ǫ
bǫ

where δǫ =
f(qǫ)

2

ǫ
.

and we must examine bǫ. If the density function f(x) has a derivative f ′(x), l’Hôpital’s rule may
be used. The limit of bǫ is then that of

2f(qǫ)f
′(qǫ)

∂qǫ
∂ǫ

= −2f ′(qǫ)

similar to (1.40). Since qǫ →∞ as ǫ→ 0 it follows that bǫ → 0 and hence aǫ →∞ if

f ′(x)→ 0 as x→∞.

It is possible to construct pathological cases when this does not hold, but in practice the condition
is valid.

Section 2.5
Algorithm 2.10 Let X1, . . . ,Xn be stochastically independent with common density function

f(x) = exp(−x), x > 0.
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If we define

pn(λ) = Pr(X1 + . . .+Xn < λ ≤ X1 + . . .+Xn+1),

the assertion (1.35) behind the Poisson generator is that

pn(λ) =
λn

n!
exp(−λ).

The proof is exercise in conditional probabiltities. For n > 1 we may write the probability as the
integral

pn(λ) =

∫

∞

0
Pr(x+X2 . . .+Xn < λ ≤ x+X2 + . . .+Xn+1|X1 = x)f(x) dx,

or

pn(λ) =

∫

∞

0
Pr(X2 . . .+Xn < λ− x ≤ X2 + . . .+Xn+1)f(x) dx.

This can be written

pn(λ) =

∫ λ

0
pn−1(λ− x)f(x) dx, n = 1, 2, . . . .

which starts at

p0(λ) = Pr(X1 > λ) = exp(−λ).

The result is certainly true for n = 0, and if it is true for n− 1, then

pn(λ) =

∫ λ

0

(λ− x)n−1

(n − 1)!
e−(λ−x)e−x dx =

∫ λ

0

(λ− x)n−1

(n− 1)!
dx e−λ =

λn

n!
exp−λ,

and it holds for n as well.

1.7 Further reading

1.8 Exercises

Introduction
These exercises are meant to promote Monte Carlo technique and are preliminary to problem solving in the
next chapter. Some topics of more general importance are also introduced here. Q-Q plotting (Exercises
2.2.2-2.2.5) is a convenient way of comparing distributions and are used on many occasions later. For some
of the exercises the underlying answer is known permitting us to examine how well Monte Carlo works. If
you find problems overly simplistic, remember that they are only an aid to tackle realistic situations later
where the answer is not known. Quite a lot about Monte Carlo performance can be learned from simple
examples.

Section 2.2
Exercise 2.2.1 Consider Gaussian financial returns R for which ξ = 0.5% and σ = 5%. They might well
be monthly ones. a) Run Monte Carlo experiments with m = 100, m = 1000 and m = 10000 simulations
and in each case compute means X̄∗ and and standard deviation s∗. b) Judge the relative accuracy in per
cent; i.e

e∗r = (
X̄∗

ξ
− 1)× 100 or e∗r = (

s∗

σ
− 1)× 100.
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c) How good are the chances of determining ξ and σ if we are dealing with historical data instead of simulated
ones?

Exercise 2.2.2 a) Generate m = 1000 Monte Carlo returns R∗

1, . . . , R
∗

m assuming them to be normal
with ξ = 0.5% and σ = 5%. b) Order them in ascending order as

R∗

(1) ≤ . . . ≤ R∗

(m)

and for i = 1, 2 . . . ,m

plot R∗

(i) against Φ−1(ui) where ui =
i− 1/2

m
.

Here Φ−1(u) is the inverse normal integral. c) Repeat when R∗

1, . . . , R
∗

m are generated under ξ = 0 and
σ = 1 (which could come from property insurance). d) You understand why the plot in c) is a straight line
at angle 45◦. Why is it another straight line in b)?

Exercise 2.2.3 The procedure in Exercise 2.2.2 where ordered simulations (or historical data!) were plotted
against percentiles are known as a Q-Q plots. Arguably it is the most efficient way of checking graphically
whether a given distribution fits. If it doesn’t, the shape deviates from a straight line. a) Draw a Monte
Carlo sample Z∗

1 , . . . , Z
∗

m from the Pareto distribution with α = 5 and β = 1 using Algorithm 2.8. Take
m = 1000. b) Order as

Z∗

(1) ≤ . . . ≤ Z∗

(m)

and plot Z∗

(i) against Φ−1(ui) as in Exercise 2.2.2. c) Comment on how the tails of the Pareto distribution
show up in the discrepancies from the straight line. There is a general story here.

Exercise 2.2.4 Q-Q plotting may be carried out against any distribution. The Gaussian percentiles Φ−i(ui)
are then replaced by general ones

F−1(ui) where ui =
i− 1/2

m

and ordered simulations like R∗

(i) or Z∗

(i) plotted against F−1(ui). a) Compute the percentiles of the Pareto

distribution when α = 5 and β = 1 using (1.32). Take m = 1000 and store them. b) Draw m = 1000 simula-
tions from the same Pareto distribution and Q-Q plot against the percentiles in a). c) Repeat b) with Pareto
simulations from α = 5 and β = 0.5. Comment? d) Repeat b) one more time, but now with α = 3 and
β = 1. What has happened to the plot? e) Simulate m = 1000 normal variables with ξ = 0.5% and σ = 5%
and Q-Q plot against the Pareto percentiles in a) as before. Anything different compared to Exercise 2.2.3b)?

Exercise 2.2.5 Q-Q plots with fake shapes emerge when the number of simulations is small. With the
Monte Carlo experiments themselves that is not important (since m is large), but it is a highly relevant
point with historical data. a) Generate normal Monte Carlo samples (ξ = 0.5% and σ = 5%) for m = 20
and Q-Q plot against the mother distribution. Do this five times. Comments? b) Repeat the exercise for
the Pareto distribution when α = 5 and β = 1, but now use m = 100. c) Try to formulate some general
lessons of the exercise.

Exercise 2.2.6 The accuracy of Monte Carlo evaluations of standard deviations hinges on the kurtosis
of X ; see (1.4). Kurtosis is defined as

κ =
E(X − ξ)4

σ4
− 3

where ξ = E(X) and σ = sd(X). Its meaning will be illustrated by the stochastic volatility model (1.20);
i.e. X = ξ + σ0

√
Zε where ε is N(0, 1). a) Show that

(X − ξ)2 = σ2
0Zε

2 so that σ2 = E(X − ξ)2 = σ2
0E(Z).
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b) By utilising (see Appendix A) that E(ε4) = 3 also show that

(X − ξ)4 = σ4
0Z

2ε4 which yields E(X − ξ)4 = 3σ4
0E(Z2).

c) Now deduce that

κ = 3

(

sd(Z)

E(Z)

)2

so that κ = 0 when X is normal.

d) Explain why κ
.
= 3var(Z) if E(Z)

.
= 1. For most stochastic volatility models used in practice this is

approximately true.

Exercise 2.2.7 Use (1.4) to explain how the accuracy of a standard deviation estimate depends on kurtosis.
Explicitly, compare the cases κ = 6 and κ = 0 (κ = 6 could well be a reasonable value for daily equity returns).

Exercise 2.2.8 The standard kurtosis estimate is

κ∗ =
λ∗4
s∗4
− 3 where λ∗4 =

1

m

m
∑

i=1

(X∗

i − X̄∗)4

Here λ∗4 is the fourth order moment. a) Motivate this estimate. We shall test it on log-normal data
X = exp(ξ + σε) where ε is N(0, 1). b) The parameter ξ does not matter. Do you see why? c) Simulate
log-normal data when σ = 0.05. Use m = 100, m = 1000 and m = 10000 and estimate each time the
kurtosis. d) Repeat c) when σ = 1. e) Compare the results with the the theoretical expression which for
the kurtosis of the log-normal which is

κ =
e6σ2 − 4e3σ2

+ 6eσ2 − 3

(eσ2 − 1)2
.

The small σ may correspond to monthly assets returns in finance and the large ones to the size of claims in
property insurance. When is the kurtosis easiest to estimate?

Exercise 2.2.9 For this exercise use a procedure for density estimation in a software package or imple-
ment (1.10) on your own. There is smoothing parameter h to adjust and we shall examine how it affects the
performance of the estimate. a) Draw a log-normal sample based on ξ = 0.5% and σ = 5% using m = 100.
b) Apply the estimate with h = 0.1, 0.2 and 0.3. Comment! c) Repeat the exercise with m = 1000. d)
Repeat b) and c) when ξ = 0 and σ = 1. What seems to be the conclusions from this exercise?

Exercise 2.2.10 Use the results in Section 2.2.2 to detail the confidence interval (1.12) when ψ is the
mean, the standard deviation and the percentile.

Exercise 2.2.11 Usually the Monte Carlo standard deviation is approximately of the form ζ/
√
m which

equals σ0 if m = (ζ/σ0)
2; see (1.13). Of course, ζ is not known, but we can get around that through a

preliminary, smaller experiment. That makes the entire scheme

X∗

1 , . . . , X
∗

m1
−→ ζ∗, m = (ζ∗/σ0)

2 and then X∗

m1+1, . . . , X
∗

m.
First round Second round

After ζ has been estimated from the first round, the main, second experiment is run with the number of
simulations determined. a) If we are dealing with the mean, then m = (s∗/σ0)

2 where s∗ is the sample
standard deviation of the first m1 simulations. Explain why. b) If X is N(0, 1) and m1 = 100, run the
preliminary experiment five times, estimate each time s∗ and report how much the estimated m varies. c)
Repeat b) when is X is Pareto distributed with parameters α = 2 and β = 1. c) What you simulate in
practice is quite likely to follow a distribution between these two extremes. Did m1 = 100 seem enough with
the Pareto model?
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Exercise 2.2.12 Suppose the Monte Carlo experiment is run to estimate the ǫ-percentile. Show that
we in the set-up of the preceding exercise should use

m =
ǫ(1− ǫ)
{f∗(q∗ǫ )}2σ2

0

for the second part of the experiment. Here q∗ǫ is the preliminary estimate of the percentile and f∗(q∗ǫ )}2 the
density estimate.

Section 2.3
Exercise 2.3.1 We shall in this exercise compare normal and log-normal models for financial returns through
simulations. The alternatives are

R = ξ + σε and R̃ = (1 + ξ) exp(− 1
2σ

2 + σε)− 1
normal model log-normal model

where ε ∼ N(0, 1). a) Explain why E(R) = E(R̃). b) Suppose ξ = 0.02% and σ = 1.5% (which could
be true for daily equity returns) Draw m = 10000 simulations from each distribution, sort each sequence
separately in ascending order as

R∗

(1) ≤ . . . ≤ R∗

(m) and R̃∗

(1) ≤ . . . ≤ R̃∗

(m)

normal model log-normal model

and plot corresponding pairs (R∗

(i), R̃
∗

(i)) from the two sequences against each other. c) Repeat b) for ξ = 5%

and σ = 23.7% (perhaps annual equity return). d) Draw conclusions from these two rounds of experiments.

Exercise 2.3.2 The issue resembles the one in Exercise 2.3.1, although now

R = ξ + σε and R̃ = exp(ξ̃ + σ̃ε)− 1

where the parameters (ξ, σ) and (ξ̃, σ̃) differ. As usual ε ∼ N(0, 1). a) Show that if

σ̃ =
√

1 + (σ/ξ)2 and ξ̃ = log(ξ)− 1

2
σ̃2

then E(R) = E(R̃) and sd(R) = sd(R̃). b) Determine ξ̃ and σ̃ if ξ = 5% and σ = 23.7%. c) Repeat the
experiment in Exercise 2.3.1c with these parameters; i.e. generate ordered, simulated returns R∗

(i) and R̃∗

(i)

under the two models and plot the pairs (R∗

(i), R̃
∗

(i)) for i = 1, . . . ,m when m = 10000. d) Comment on the
difference between the two models.

Exercise 2.3.3 a) Draw a sample of 1000 log-normals Z = exp(σε) when σ = 0.05, σ = 0.4, σ = 1.0
and σ = 2. b) Estimate in each of the four cases the density function and plot it. c) Comment on the
distribution as a model for financial returns and for size of claims in property insurance.

Exercise 2.3.4 Consider the stochastic volatility model (1.20) for log-returns; i.e. assume that

R = exp(X)− 1, where X = ξ + σ0

√
Z ε, ε ∼ N(0, 1).

A possible model for Z is to make it log-normal, for example Z = exp(−τ2 + 2τη) where η ∼ N(0, 1), τ ≥ 0
and where η is independent of ε. a) Explain why

√
Z is also a log-normal variable. b) Use the formulae for

mean and standard deviation of such variables in Section 2.3 to deduce that

E(
√
Z) = 1 and sd(

√
Z) =

√

eτ2 − 1,

22



and the degree of stochastic volatility goes up with τ .

Exercise 2.3.5 a) Implement a program for sampling R under the model of the preceding exercise. Suppose
ξ = 0.5% and σ0 = 5% (R could then be monthly return of equity). b) Draw m = 1000 simulations of R
when τ = 0.5, estimate the density function and plot it (it is inaccessible through ordinary mathematics
now!). c) Redo b) when τ = 0.001 and comment on the different shapes of the plots.

Exercise 2.3.6 Consider again the model for R introduced in Exercise 2.3.4 and the simulation program in
Exercise 2.3.5. Suppose ξ = 0.5% and σ0 = 5%. a) Run the program m = 10000 times when τ = 0.5 and
compute the ε-percentiles of R for ε = 0.01, 0.05, 0.50, 0.95 and 0.99. b) Redo when τ = 0.001. c) Compare
the results in a) and b) and comment.

Section 2.4
Exercise 2.4.1 Consider the bivariate normal model (1.21). a) Simulate it (m = 100) when

ξ1 = ξ2 = 5%, σ1 = σ2 = 25% and ρ = 0.2, ρ = 0.7 ρ = 0.95,

and make scatter-plots in each of these three cases. b) Redo a) for log-returns; i.e convert X1 and X2 to
R1 and R2 through R1 = exp(X1)−1 and R2 = exp(X2)−1. This example could be annual returns for equity.

Exercise 2.4.2 Suppose a financial portfolio has placed equal weights on the two assets of the preced-
ing exercise. This means that portfolio return is R = (R1 + R2)/2; see (??) in Section 1.3. a) Simulate R
m = 10000 times when ρ = 0.2 and compute the percentiles for ε = 1, 5%, 50% and 95%. b) Redo a) for
ρ = 0.5 and ρ = 0.95 and compare the sets of percentiles computed.

Exercise 2.4.3 Suppose the financial portfolio of the preceding exercise is based on J = 5 assets instead still
with equal weights on all. The portfolio return is now R = (R1 + . . .+R5)/5. a) Implement Algorithm 2.4
for financial returns that are log-normal with common correlation coefficient ρ. b) Determine the percentiles
of R when ξ = 5% and σ = 25% for all five assets and ρ = 0.2. c) Redo b) when ρ = 0.5 and 0.95. d)
Compare the evaluations in b) and c) with the analogous ones in Exercise 2.4.2. Any patterns?

Exercise 2.4.4 Consider a heavy-tailed bivariate model of the form

R1 = exp(X1)− 1
R2 = exp(X2)− 1

where
X1 = ξ + σ0

√
Z1 ε1

X2 = ξ + σ0

√
Z2 ε2.

and Z1 = Z2 = Z.

Here ε1 and ε2 are N(0, 1) with correlation ρ. As in Exercise 2.3.4 Z = exp(−τ2 + 2τη) for η ∼ N(0, 1).
a) Implement a program that samples (R1, R2). b) Calculate the 1%, 5%, 50% and 95% percentiles of
the portfolio return R = (R1 + R2)/2 under conditions similar to those in Exercise 2.4.2; i.e take ξ = 5%,
σ0 = 25%, ρ = 0.5 and let τ = 0.5. c) What’s the effect of the heavy tails when you compare with the
ρ = 0.5 evaluations in Exercise 2.4.2?

Exercise 2.4.5 Consider the model of the preceding exercise, but now allow Z1 and Z2 to be different.
A simple construction is

Z1 = exp(−τ2
1 + 2τ1η1) and Z2 = exp(−τ2

2 + 2τ2η2)

where η1 and η2 are N(0, 1) with correlation ρη = cor(η1, η2). a) Explain why the model is the same as in
the preceding exercise if τ1 = τ2 and ρη = 1. b) Revise the program in Exercise 2.4.4a) so that it covers the
present situation. c) Calculate the 1%, 5%, 50% and 95% percentiles of the portfolio return R = (R1+R2)/2
when ξ = 5%, σ0 = 25%, ρ = 0.5, τ1 = τ2 = 0.5 and ρη = 0.0. Compare with the results from Exercise 2.4.4.

Exercise 2.4.6 An avant-garde model would be to allow stochastic correlations. If it appears far-fetched,
the idea has nevertheless been proposed (and substantiated) in academic literature, for example in Ball and
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Torus (2000). With the machinery in Section 2.4 it is not hard to build such models for financial returns.
For example, starting from the same angle as before let Rj = exp(ξ + σ0εj)− 1 for j = 1, 2 where ε1 and ε2
are N(0,1) with correlation coefficient ρ for which

ρ =
(1 + ρ0)e

τη − (1− ρ0)

(1 + ρ0)eτη + (1− ρ0)
where η ∼ N(0, 1).

a) Verify that −1 < ρ < 1 and that ρ0 is the median in the distribution for ρ [Hint: The median appears
when η = 0.]. b) How do you make ρ a fixed parameter and what’s its value then? c) Implement a program
that samples (R1, R2) under this model. d) Compute the 1%, 5%, 50% and 95% percentiles of the portfolio
return R = (R1 +R2)/2 now using ξ = 5%, σ0 = 25%, ρ0 = 0.5 and τ1 = 0.5. You may again compare with
results in Exercise 2.4.2

Section 2.5
Exercises 2.5.1-4 introduce probability distributions that have been proposed (and used) in property insur-
ance. None of them admits simple matematical expressions for mean and variance. An alternative way of
interpreting their parameters is to use median and quantile difference i.e.

med(X) = q0.5 and qd(X) = q0.75 − q0.25 (1.41)

where qε is the lower ε-percentile of the distribution function F (x); i.e the solution of the equation F (qε) = ε.
The quantile difference is a measure of spread.

Exercise 2.5.1 The Weibull model comes from engineering orginally. Its distribution function is

F (x) = 1− exp{−(x/β)α}, x > 0.

Here α, β > 0 are parameters. a) Show that

X∗ = β(− logU∗)1/α

is the inversion sampler. b) Use this to derive mathematical expressions for med(X) and qd(X); see (1.41).
c) Generate m = 1000 simulations for β = 1 and α = 1.0, 3.15 and 5.0. Plot in each case density estimates
and comment. d) Run m = 10000 simulations for α = 3.15 and β = 1 and run a Q-Q plot against the
normal distribution. Any comments?

Exercise 2.5.2 The Fréchet distribution

F (x) = exp{−(x/β)−α}, x > 0,

is of a so-called extreme value type. Again α, β > 0 are parameters. a) Derive its inversion sampler and b)
Determine med(X) and qd(X); see (1.41).

Exercise 2.5.3 Still another distribution sometimes used in property insurance is the logistic one for
which

F (x) = 1− 1 + α

1 + α exp(x/β)
, x > 0.

Once again the parameters α, β > 0. a) Derive the inversion sampler. b) Determine mathematical expres-
sions for med(X) and qd(X); see (1.41).

Exercise 2.5.4 The Burr model has three positive parameters α1, α2 and β and its distribution func-
tion is

F (x) = 1− {1 + (x/β)α1}−α2 , x > 0.
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a) Derive its inversion sampler. b) Find mathematical expressions for med(X) and qd(X), see (1.41).

Section 2.6
Exercise 2.6.1 Let Y be exponentially distributed with density function exp(−y), y > 0 and let X = βY 1/α

with α, β > 0. a) Show that

Pr(X ≤ x) = Pr(Y ≤ (x/β)α) = 1− exp{−(x/β)α}, x > 0.

b) Use Exercise 2.5.1 to identify the model for X as the Weibull distribution.

Exercise 2.6.2 a) Draw m = 1000 Poisson variables when λ = 5, 20 and 100. b) In each of the three
cases use a Q-Q plot to compare against the normal distribution. Comments?

Exercise 2.6.3 Let N1 = M4 + M7 where M4 and M7 are Poisson distributed with parameters λ = 4
and λ = 7 respectively and let N2 be Poisson with parameter λ = 11. a) Generate m = 1000 Monte Carlo
samples of N1 and then b) the same number of simulations from N2. c) Compare the the distributions of
N1 and N2 by Q-Q plotting their ordered simulations against each other. Any comments? For the general
story see Chapter 8.

Exercise 2.6.4 We shall in this exercise consider sums of exponentially distributed variables, as in Al-
gorithm 2.10, but now with a fixed number of terms. Let Y = X1 + . . . + X5, where X1, . . . , X5 are
exponentially distributed. a) Sample Y one thousand times. b) Sample the same number of times from
a Gamma distribution with shape parameter α = 5. c) Compare the two distributions by plotting the
ordered simulations against each other as in the preceding exercise. Again there is a more general story. It
is presented in Chapter 9.

Exercise 2.6.5 One way to inestigate the efficiency of the Gamma simulator in Algorithm 2.11 is to check
how often the acceptance criterion holds. With a slight rephrasal let U∗ and V ∗ be uniform random variables.
What we seek is the probability of the event

log(U∗) ≤ (α− 1)(log(X∗)−X∗) where X∗ = − log(V ∗).

Run 100000 simulations for α = 2, 20, 100 and 1000 and estimate the acceptance probability. A smarter
way is given in the next exercise!

Exercise 2.6.6 a) Implement the Gamma generator Algorithm 2.11. b) Generate m = 1000 simula-
tions when α = 2 and ξ = 1. c) Check the program by plotting a density function estimated from the
simulations. d) Redo (possibly with smaller m) for α = 100 and establish that the procedure now is more
time-consuming. To understand why we shall try to find out how many repetitions are needed for accept to
occur. The simplest way is to compute the constant M prior to Algorithm 2.11 in Section 2.6; i.e.

M =
αα

Γ(α)
exp(−α+ 1) where for integers n Γ(n) = (n− 1)!

e) Explain from the theory in Section 2.5 why M equals the average number of trials for each simulation. f)

Compute it for α = 2, 20, 100 and 1000 and compare with the assessments in Exercise 2.6.5. Any comments?

Such sensitive performance is typical for the rejection/acceptance method. Cleverness is needed!
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