
1 Modelling II: Conditional and non-linear

1.1 Introduction

Insurance risk requires modelling tools different from those of the preceding chapter. Pension
insurance makes use of life cycle descriptions of individuals. They start as ‘active’ (paying con-
tributions), at one point they ‘retire’ (drawing benefits) or become ‘disabled’ (benefits again) and
they may die. To keep track on what happens stochastic models are needed, but those can not
possibly be constructed by means of linear relationships like in the preceding chapter. There are
no numerical variables to connect! Instead we link distributions.

The central concept is conditional probabilities, expressing mathematically that what has oc-
curred is going to influence (but not determine) what comes next. That idea is the principal topic
of the chapter. As elsewhere, mathematical aspects (here going rather deep) are downplayed. Our
target is the conditional viewpoint as a modelling tool. Sequences of states in life cycles involve time
series (but of kind different from those in Chapter 5) and are treated in Section 6.6. Actually time
may not be involved at all. Risk hetereogenity in property insurance is a typical (and important)
example. Consider a car owner. What he encounters daily in the traffic is thoroughly influenced by
randomness, but so is (from a company point of view) his ability as a driver. These are uncertain-
ties of entirely different origin and define a hierarchy (driver comes first). Conditional modelling
is the natural way to connect random effects of this kind that operate on different levels. The very
same viewpoint is used when estimation and Monte Carlo errors are examined in the next chapter,
and there are countless other examples.

Conditional arguments will hang over much of this chapter, and we embark on it in the next
section. Copulas is an additional tool. The idea behind is very different from conditioning and as
a popular approach of fairly recent origin. Yet copulas has without doubt to come to stay. Section
6.7 is an introduction.

1.2 Conditional modelling

Introduction
Conditional modelling is sequential modelling, first X and then Y given X. The purpose of this
section is to demonstrate the power in this line of thinking. It is the natural way to describe
countless stochastic phenomena, and simulation is easy. Simply

generate X∗ and then Y ∗ given X∗,

the second drawing being dependent on the outcome of the first. It is assumed that you are familiar
with conditional probabilities at an introductory level (if not, there is a brief section in Appendix
A). When an event A has occurred, the probability of another one B changes from Pr(B) to

Pr(B|A) =
Pr(A ∩B)

Pr(A)
, (1.1)

of obvious relevance in gambling where new information leads to new odds. In this book conditional
probabilities are above all modelling tools, used to express random relationships between random
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variables. Note the mathematical notation. The condition is always placed to the right of a vertical
bar. For conditional density functions and conditional expectatons this reads f(y|x) and E(Y |x)
if X = x is given.

Modelling can only be learnt by example, and the present section is a bunch of cases. We start
with bivariate normal models. These are important in themselves, and introduce the main concepts
nicely:

The conditional Gaussian
Bivariate normal models were in Chapter 2 defined through

X1 = ξ1 + σ1η1 and X2 = ξ2 + σ2(ρη1 +
√

1− ρ2 η2),

where η1 and η2 are independent and N(0, 1). see (??). Suppose X1 = x1 is fixed. Then η1 =
(x1 − ξ1)/σ1, which when inserted for η1 in the representation for X2 leads to

X2 = ξ2 + σ2(ρ
x1 − ξ1

σ1
+
√

1− ρ2η2),

or after some reorganizing

X2 = (ξ2 + ρσ2
x1−ξ1

σ1
) + (σ2

√

1− ρ2) · η2.

expectation standard deviation
(1.2)

Here η2 is the only random term and, by definition, X2 is normal with mean and standard deviation

E(X2|x1) = ξ2 + ρσ2
x1 − ξ1

σ1
and sd(X2|x1) = σ2

√

1− ρ2. (1.3)

We are dealing with a conditional distribution. As x1 is varied, then so does the expectation
and (for other models) also standard deviation.

Survival modelling
Let Y be the length of life of an individual. A central quantity in life insurance is

tpy0
= Pr(Y > y0 + t|Y > y0), (1.4)

called the survival probability. This is the likelihood that a person of age y0 lives at least t
longer. If F (y) is the distribution function of Y , then from (1.1)

tpy0
=

Pr(Y > y0 + t)

Pr(Y > y0)
=

1− F (y0 + t)

1− F (y0)
for y0, t > 0. (1.5)

Survival probabilities are often used on multiples of a given increment h, for example

yl = lh l = 0, 1 . . . and tk = kh k = 0, 1 . . . ,
age time
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and we shall write kpl0 = tpy0
when y0 = l0h and t = kh. The probability of surviving the coming

k time steps must be equal to

kpl0 = 1pl0 × 1pl0+1 × · · · × 1pl0+k−1,
first interval second interval k’th interval

(1.6)

and survival modelling is built up from the one-step probabilities 1pl; see Section 3.4 for a specific
example.

Over threshold modelling
Conditional probabilities of exactly the same type is needed in property insurance too, particularly
in connection with large claims and re-insurance. For a given threshold b we seek the distribution
of

Z = Y − b given that Y > b. (1.7)

We can write it down by replacing t and y0 on the right in (1.5) by z and b. Thus

Pr(Z > z|Y > b) =
1− F (b + z)

1− F (b)
,

where F (y) is the distribution function of Y . When differentiated with respect to z, this leads to

fb(z) =
f(z + b)

1− F (b)
, z > 0. (1.8)

as the density function for the amount exceeding a given threshold. Tail distributions of this type
possess a remarkable property, see Pickands (1975). For most distributions used in practice, pre-
cisely if f(y) is not identically zero above some upper limit, then fb(z) become either a Pareto
density or an exponential one1 as b → ∞. This applies no matter which distribution we started
with and suggests Pareto models for extreme tails ; see Chapter 9.

Risk hetereogenity
It was in Chapter 3 suggested that random variation for claim frequency N in property insurance
should be described by (n = 0, 1, . . .)

Pr(N = n|µ) =
λn

n!
exp(−λ) where λ = µT

Policy

or λ = JµT ;
Portfolio

see (??)and (??). The central parameter is µ, the claim intensity. Why should that quantity nec-
essarily be the same for everybody? In automobile insurance where drivers are of different ability,
there must be discrepancies. Neither are general conditions necessarily the same in all periods.
Weather influencing driving is an example, in some countries causing considerable variation; see
Chapter 8.

Modelling is the same whether µ affects policies indvidually or the entire portfolio collectively.

1The exponential model is a limiting member of the Pareto class; see Section 2.6 and the limit is therefore
a member of a generalised Pareto class.
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The claim frequency observed (N for an individual or N for a portfolio) is the outcome of two
experiments in a hierarchy. First µ is drawn randomly and then N or N through a conditional
model given µ; i.e.

µ = ξZ, N |µ ∼ Poisson(µT ) and µ = ξZ, N|µ ∼ Poisson(JµT ).
policy level portfolio level

(1.9)

Clearly Z is positive, and we should impose E(Z) = 1 to make ξ the mean intensity. The standard
model for Z is Gamma(α), one of the distributions introduced in Section 2.6. Then

E(µ) = ξ and sd(µ) = ξ/
√

α, (1.10)

and the variability in µ, controlled by α, is removed when α→∞. In the limit µ becomes fixed as ξ.

Common risk factors
Claim numbers N1, . . . , NJ depending on the same random intensity µ is a special case of a more
general viewpoint. A random variable ω is called a common factor for X1, . . . ,XJ if

X1, . . . ,XJ are conditionally independent given ω (1.11)

The same feature might also apply to sizes of claims, and in CAPM models (Section 5.3) the market
component played that role. If ω isn’t directly observable we are dealing with hidden or latent
factors.

Common factors (whether hidden or not) invariably increase risk and they are impossible to diver-
sify. Figure 6.1 is a simulated example where claim frequency over 25 years were generated for one
‘small’ and one ‘large’ car insurance portfolio. The intensity µ, changed every year and was the
same for all policies. Suppose µ follows a Gamma model. Claim frequencies are then generated
through

Z∗ ∼ Gamma(α), µ∗ ← ξZ∗ and then N ∗ ∼ Poisson(Jµ∗T ).

The experiments in Figure 6.1 were run as 25 independent drawings for each of m = 20 scenarios
plotted jointly. Underlying parameters were

ξ = 5%, α = 100, T = 1,

which means that claim frequency per car is 5% in an average year and the standard deviation 10%
of that; see (1.10). Fluctuations in Figure 6.1 seem to match this fairly well2, but the main point
is the uncertainty which is relative terms is no smaller for the large portfolio. That runs contrary
to what has seen before (Section 3.2) and reflects that the effect of common factors isn’t removed
through size. The mathematics is given in Section 6.3.

Monte Carlo distributions
Simulation experiments are often run from parameters that have been estimated from historical
data. The distribution of the simulations are then influenced by estimation error in addition to

2The oscillations in both plots go out to about ±20% of the position of the straight line, and the 10%
relative standard deviation emerges when you divide on two.
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Figure 6.1 Simulated portfolio claim frequency scenarios under annual change of risk

ordinary Monte Carlo randomness. To be specific, suppose claim frequency N against a portfolio
follows the ordinary Poisson model and let µ̂ be the estimated claim intensity (estimation method
in Chapter 8). The scheme is then

historical data −→ µ̂ −→ N ∗,
estimation Monte Carlo

and the question is how we examine the impact of both sources of error. A first step is to notice
that the model for N ∗ really is a conditional one; i.e

Pr(N ∗ = n|µ̂) =
(JT µ̂)n

n!
exp(−JT µ̂), n = 0, 1, . . . ,

and we must combine with statistical errors in the estimation process. The argument is given in
Chapter 7.

1.3 Risk from subordinate level

Introduction
Situations where a risk variable X is influenced by a second random factor ω on a subordinate
level were introduced in the preceding section. Think of ω as personal qualities of a policy holder,
background conditions affecting an entire insurance portfolio or market risk in finance. The impor-
tance of this kind of uncertainty was examined in Section 5.3 through a specific model (CAPM),
but it is also possible to proceed through a looser specification which makes use of the conditional
mean and standard deviation only. To this end let

ξ(ω) = E(X|ω) and σ(ω) = sd(X|ω), (1.12)

and the aim of this section is to examine what impact it has on portfolio risk that the mean and
standard deviation vary with ω.
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The double rules
Our tool is two operational rules that is best introduced in terms of a general random variable
Y dependent on a random vector X of an arbitrary number of variables. The condional mean
ξ(x) = E(Y |x) plays a leading role in risk modelling; see Section 6.4. Here the issue is how ξ(x)
and σ(x) = sd(Y |x) influence Y . Important insight is provided by the identities

E(Y ) = E{ξ(X)}
double expectation

for ξ(x) = E(Y |x) (1.13)

and

var(Y ) = var{ξ(X)} + E{σ2(X)}
double variance

for σ(x) = sd(Y |x), (1.14)

which are proved in Appendix A. Note that ξ(X) and σ2(X) are random variables. Their ex-
pectation and variance lead to the expectation and variance of Y . The double variance formula
decomposes var(Y ) into two positive contributions and has consequences reaching far.

These formulae do not require conditional modelling beyond mean and standard deviation, and
a number of useful results can be derived from them. They will in Chapter 7 play a main role when
errors of different origin are integrated.

Impact of subordinate risk
Let X1, . . . ,XJ be risk variables with Xj depending on a subordinate factor ωj. These are still
seen as independent risks, but this now means that they are conditionally independent given
ω1, . . . , ωJ . We shall consider the two different sampling regimes

ω1 = . . . = ωJ = ω
common factor

and ω1, . . . , ωJ unrelated.
individual parameters

On the left ω is a common background factor affecting the entire portfolio whereas on the right
ωj is attached each Xj individually. Their effect on portfolio risk X = X1 + . . . + XJ is widely
different, as we shall now see. It will be assumed that all risks Xj and all subordinate factors ωj

follow the same distribution (not essential).

Consider first the case where ω is a common background factor for the entire portfolio. We are
assuming that ξ(ω) = E(Xj |ω) and σ(ω) = sd(Xj |ω) are the same for all j. Hence, by adding all
contributions

E(X|ω) = Jξ(ω) and var(X|ω) = Jσ2(ω),

the variance formula demanding conditional independence. Invoke the double rules with Y = X
and X = ω. Then, by (1.14)

var(X ) = var{Jξ(ω)} + E{Jσ2(ω)} = J2var{ξ(ω)} + JE{σ2(ω)}
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which with (1.13) leads to

E(X ) = JE{ξ(ω)} and sd(X ) = J
√

var{ξ(ω)} + E{σ2(ω)}/J,
common ω

(1.15)

and standard deviation is of the same order of magnitude J as the expectation itself. Such risk can
not be diversified away by increasing the portfolio size. Indeed,

sd(X )

E(X )
→ sd{ξ(ω)}

E{ξ(ω)} as J →∞

which does not vanish if sd{ξ(ω)} > 0.

Things change drastically when each Xj is attached a separate and independently drawn ωj. The
mean and variance of each Xj are now calculated by inserting J = 1 in (1.15). When all of those
are added over j, we obtain mean and variance on portfolio level; i.e

E(X ) = JE{ξ(ω)} and sd(X ) =
√

JE{σ2(ω)}+ Jvar{ξ(ω)}.
ω individual

(1.16)

The mean is the same as before, but the standard deviation has now the familiar form proportional
to
√

J .

Example: Random claim intensity.
The preceding argument enables us to understand how random intensities µ1 . . . , µJ influence the
claim frequency N = N1 + . . . + NJ of the portfolio under the two sampling regimes above:

µ1 = . . . = µJ = µ
common factor

and µ1, . . . , µJ independent.
individual parameters

On the left a common (random) factor µ is allocated all policy holders jointly whereas on the right
there is one independent intensity for each individual. Claim frequencies N1, . . . , NJ are in either
case conditionally independent and Poisson given µ1, . . . , µJ . In particular, for an arbitrary N

E(N |µ) = µT and var(N |µ) = µT.

which are the functions ξ(µ) and σ2(µ) in (1.15) and (1.16). With ξµ = E(µ) and σµ = sd(µ) as
the mean and standard deviation of µ (1.15) yields

E(N ) = JTξµ and sd(N ) = JT
√

σ2
µ + ξµ/(JT ),

common µ

(1.17)

and the form of the standard deviation (almost proportional to J) explains the simulated patterns
in Figure 6.1 where relative random uncertainty seemed unaffected by J .

This changes when µ1, . . . , µJ are drawn independently of each other. Now

E(N ) = JTξµ and sd(N ) = T
√

J(σ2
µ + ξµ/T ),

µ individual

(1.18)
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and the standard deviation has the familiar form proportional to
√

J . The practical significance of
such risk hetereogeneity over policies will be examined below.

Insurance risk: A simple formula
Another useful consequences of the double rules are simple formulae for mean and standard devia-
tion of total portfolio loss. Consider the model from Section 3.2; i.e

X =
N
∑

i=1

Zi

where N , Z1, Z2 . . . are stochastically independent. Let E(Zi) = ξz and sd(Zi) = σz. Elementary
rules for expectation and variance of sums yields

E(X |N ) = N ξz and var(X|N ) = Nσ2
z .

To incorporate claim frequency N as an additional source of randomness take Y = X and X = N
in (1.13) and (1.14). Then

var(X ) = var(N ξz) + E(Nσ2
z ) = var(N )ξ2

z + E(N )σ2
z

so that

E(X ) = E(N )ξz and var(X ) = E(N )σ2
z + var(N )ξ2

z . (1.19)

In particular, suppose N follows a pure Poisson distribution. Then E(N ) = var(N ) = JµT and

E(X ) = JµTξz and var(X ) = JµT (σ2
z + ξ2

z ), (1.20)

which will be used repeatedly.

Random claim intensity: Important at portfolios level?
We may examine how portfolio liabilities X are affected by random claim intensities by inserting
the expressions in (1.17) and (1.18) for E(N ) and sd(N ) into (1.19). For the mean this yields

E(X ) = Jξµξz, (1.21)

the same whether µ is generated as a common value for the entire portfolio or individually for each
policy. That is different with the standard deviation, but a little algebra (detailed in Section 6.8)
leads to

sd(X ) =
√

Jξµ(σ2
z + ξ2

z) × √
1 + δγ

for pure Poisson due to random µ
(1.22)

where

δ =
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
and γ =

1 for indvidual µ
J for common µ

(1.23)

This lengty expression tells a lot. The factor
√

1 + δγ on the very right in (1.22) is caused by the
uncertainty in µ and makes portfolio go up.
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But by how much? In practice δ is quite small (hardly more than a few per cent, see Exercise
6.3.2). This leads to the following observation. Suppose µ1, . . . , µJ are drawn independently of
each other. Then

√

1 + δγ =
√

1 + δ
.
= 1 + δ/2,

not a high increase in risk. Indeed, on portfolio level hetereogenity between policies usually con-
tributes little extra risk, but this changes when µ is a collective risk factor. Now

√
1 + δγ =

√
1 + Jδ

which for large J could be huge.

1.4 The role of the conditional mean

Introduction
The conditional mean is much more than a brick in the double rules of the preceding section. If X
is a quantity observed, we might use

Ŷ = ξ(X) = E(Y |X) (1.24)

as a way of guessing the value of an unknown Y . Indeed, in theory this is the best way to do it
(see below). The result is a celebrated one in engineering and statistics, yet not that prominent in
actuarial science. When Y is a future value, we are often more concerned with summaries such as
mean and percentiles than with predicting its actual outcome.

But there is another (and important) side to conditional means. Suppose X is information pos-
sessed at a certain point in time. Then E(Y |X) is what is expected given that knowledge and
could be a natural break-even price for carrying the risk Y . Shouldn’t what we charge reflect what
we know? For example X might in property insurance summarize our experience with a policy
holder or supply other information with bearing on risk. Both versions will appear in Part II; see
Chapter 10 in particular. Here the main example is the pricing of money market products such
as bonds. This leads us to the theoretical interest rate curve and the term structure for bonds
over different times to maturity. Specific solutions are obtained by invoking models from Section 5.6.

A quick word on the meaning of X in the present context: Think of it as all present and past
observations with bearing on Y . Theoretical literature often refers to X as a sigma-field (typically
denoted F), but it is perfectly possible to understand the ideas involved without such formalism
from measure theory.

Optimal prediction
Central mathematical properties of the conditional mean are

E(Ŷ − Y ) = 0 and E(Ŷ − Y )2 ≤ E(Ỹ − Y )2 for all Ỹ = Ỹ (X).
expected error expected squared error

(1.25)

Here the left hand side, which is merely a rephrasal of the rule of double expectation (1.13), signifies
that the expected prediction error Ŷ − Y is zero. The prediction Ŷ is thus unbiased; more on
that in Chapter 7. On the right Ỹ = Ỹ (X) is an arbitrary function of X, and the inequality shows
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that the conditional mean is on average the most accurate way of utilizing the information X. The
proof is given in Appendix A.

As an example consider interest rates following the Vasicĕk model of Section 5.6. The rate rk

at time tk can then be written

rk = ξ + σ(εk + aεk−1 + . . . + ak−1ε1) + ak(r0 − ξ);

see (??). Here r0 is known at t0 = 0 (current time), and ε1, ε2, . . . are independent random
disturbances with zero mean and unit variance. It was shown in section 5.6 that

E(rk|r0) = ξ + ak(r0 − ξ) and sd(rk|r0) = σ

√

1− a2k

1− a2
,

On the left r̂k = E(rk|r0) is the best prediction of rk if the Vasicĕk model is true.

What could the accuracy be? A quick look is provided by the formula for the standard devia-
tion. Possible annual parameters could be σ = 0.016 and a = 0.7. If so standard deviation becomes
1.4% after one year and 2.2% after five. This signifies huge errors, up to 3 − 4% and more. Fore-
casting interest levels through simple statistical procedures is futile.

Term structure modelling
The conditional mean is in the money market much more important for pricing than for predic-
tion. As above let r0 be the spot rate of interest today (known) and r1, . . . , rk those of the future
(unknown). Introduce

P (r0, tk) = EQ(Dk|r0) where Dk =
1

1 + r1
· · · 1

1 + rk
. (1.26)

Here Dk is a discount and had future rates of interest been known, that is what you would pay for a
zero-coupon bond expiring at tk; i.e for the right to receive one money unit at that time. In practice
Dk is unknown, but there are anticipations of what it is going to be. Suppose a description in terms
of a stochastic model is available. We may then calculate the conditional mean in (1.26), and a ratio-
nal financial market turns out to value bonds by it! The result requires mathematics of some depth
and is proved in Chapter 14. It will then emerge that the Q-model describing future operations in
the money market is not the same as the one underlying the spot rate rk. We encountered the same
dualism with equity in Section 3.5, and there are many common features in the underlying theories.

For the zero-coupon bonds of Section 1.4 there are now two sets of prices The preceding term
structure P (r0, tk) is a theoretical one based on a mathematical description of market view and
expectations, and there are also the real prices P (0:k) traded. Why bother with the theoretical
ones at all? Answer: We need them to describe future bond prices and their uncertainty. For
example, suppose r∗k is a Monte Carlo spot rate . Then P (r∗k, T ) is a simulated price at time tk of a
bond expiring at tk + T . Such simulations will in Chapter 15 play a crucial role with modern fair
value accounting and with the coordination of assets and liabilities in the life insurance industry.

Shouldn’t the observed set of bond prices P (0:k) and the theoretical ones P (r0, tk) at time t0 = 0
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equal? They must if the Q-model correctly reflects the market view on future uncertainty, and it
is common to calibrate its parameters by matching the two sets.

Example: The Vasicĕk term structure
Countless theoretical bond pricing schemes have appeared in the literature; see Section 6.9. They
make use of a mathematical limiting process where h→ 0 and carefully constructed Q-models that
allow explicit formulae. One of the simplest and most widely used is the Vasicĕk model

rk − rk−1 = aqh(ξq − rk−1) +
√

hσqεk,

written as in (??) with h present in the notation. Note that the parameters are subscripted with
q to emphasize risk-neutrality. Calculations of (1.26) under this model are carried out in Exercises
5.7.12-16. This leads to

P (r0, T ) = eA(T )−B(T )r0 (1.27)

where

B(T ) =
1− e−aqT

aq
and A(T ) = (B(T )− T )

(

ξq −
σ2

q

2a2
q

)

− σ2
qB(T )2

4aq
. (1.28)

We may interprete P (r0, T ) as the price in a Vasicĕk world of a zero-coupon bond maturing at time
T when r0 is the present rate of interest.

Monte Carlo term structures
With modern computational power simple bond price formulae may not be so important as before.
Indeed, it is perfectly feasible to compute P (r0, tk) by Monte Carlo and store it as a table over a
suitable set of pairs (r0, tk). Simulations such as P (r∗k, tk) may then be read off approximately from
the table. There is a minor numerical inaccuracy, but of little practical importance, and we may
now employ any Q-model we like. The following implementation is for the Black-Karisinsky model
(for which simple solutions do not exist);

Algorithm 6.1 The Black-Karisinsky term structure
0 Input: m, ξq, aq, σq, r0, h and

σx = σq/
√

1− a2
q , x0 = log(r0/ξq) + σ2

x/2

1 P ∗(k)← 0 for k = 1, . . . ,K %P ∗(k) the theoretical bond price

2 Repeat m times
3 X∗ ← x0, D∗ ← 1/m %D∗ will serve as discount

4 For k = 1, . . . ,K do
5 Draw ε∗ ∼ N(0, 1) and X∗ ← aqX

∗ + σqε
∗

6 r∗ ← ξqe
−σ2

x/2+X∗

and D∗ ← D∗/(1 + r∗)
7 P ∗(k)← P ∗(k) + D∗ %The k-step discount summarized

8 Return P ∗(k) for k = 1, . . . ,K

The algorithm simulates future rates of interest and updates the stochastic discounts as it goes
through the inner loop over k. Output from the outer loop are Monte Carlo approximations P ∗(k)
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Figure 6.2 Interest rate curves (from m = 10000 simulations) under the Black-Karisinsky model

when the initial rate of interest is varied.

to P (r0, tk) for k = 1, . . . ,K. Re-runs for many different r0 are necessary.

If you want the computations to run on a finely meshed time scale, you must adapt the parameters
as explained in Section 5.6. The examples in Figure 6.2 have been run om a crude annual one with
parameters

ξq = 4%, aq = 0.7, σq = 0.25 and ξq = 4%, aq = 0.5, σq = 0.31317

and with bond prices converted to the yield curve through

r̄∗(0:k) = P ∗(0:k)−1/k − 1,

which is the average rate of interest over the period in question; see Section 1.4. The initial rate r0

varied between r0 = 2%, 4% 6% 8% and 10% and lead to the different shapes in Figure 6.2. In the
long run the yield tends to ξ = 4% as an average with a speed determined by aq.

1.5 Stochastic dependence: General

Introduction
General probabilitic descriptions of dependent random variables X1, . . . ,Xn are provided by joint
density functions f(x1, . . . , xn) or joint distribution functions F (x1, . . . , xn). The latter are
defined as the probabilities

F (x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn),

and f(x1, . . . , xn) is its n-fold partial derivative with respect to x1, . . . , xn. In practice we may
think of it as the likelihood of the event

X1 = x1, X2 = x2, . . . , Xn = xn,
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though formally (in a strict mathematical sense) this probability is zero. Textbooks in probability
and statistics often start with density functions. They may play a vital role in checking logical
consistency in stochastic modelling, but in this book that is always obvious, and we need not go
into it. Joint density functions are also needed for the likelihood criterion in the next chapter,
which often opens for the best possible use of historical data. Copulas in Section 6.7 are examples
of modelling joint densities directly.

Factorization of density functions
Whether X1, . . . ,Xn is a series in time or not we may always envisage them in a certain order.
This observation opens for a general way to simulate. Simply go recursively through the scheme

Sample X∗
1 X∗

2 |X∗
1 · · · X∗

n|X∗
1 , . . . ,X∗

n−1

Probabiltities f(x1) f(x2|X∗
1 ) · · · f(xn|X∗

1 , . . . ,X∗
n−1),

where each drawing is conditional on what has come up before. We start by generating X1 and end
with Xn given all the others. The order selected does not matter in theory, but in practice there is
often a natural sequence to use. If it isn’t, look for other ways to do it.

Multiplying probabiltities of single events leads to probabiltities of joint events; see Appendix
A. Here this exercise leads to the general factorization

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , xn−1),
general factorization

(1.29)

which reflects that the sampling scheme above produces a Monte Carlo simulation from f(x1, . . . , xn).
In (1.29) the joint density is broken down on a sequence of conditional ones. Several special cases
are of interest.

Types of dependence
The model with a common random factor in Section 6.2 is of the form

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1).
Common factor: First variable

(1.30)

Here the conditional densities only depend on the first variable, and all the variables X2, . . . ,Xn

are conditionally independent given the first. Full independence means

f(x1, . . . , xn) = f(x1)f(x2) · · · f(xn).
Independence

(1.31)

Finally, there is the issue of Markov dependence, typically associated with time series. Now Xk

is recorded at time tk. The model is

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|xn−1),
Markov dependence

(1.32)

where Xk only depends on the preceding Xk−1, those before tk−1 being irrelevant. Most models in
life insurance belongs to this class, and the random walk and first order autoregression models of
Section 5.6 do too; see below. How the general sampling scheme above is adapted is obvious, but
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the Markov situation is so important that the steps are summarized in the following algorithm:

Algorithm 6.2 Markov sampling
0 Input: Conditional models
1 Generate X∗

1

2 For k=2,. . . ,n do
3 Generate X∗

k given X∗
k−1 %Sampling from f(xk|X∗

k−1)

4 Return X∗
1 , . . . ,X∗

n

Examples are given in Section 6.6 and in Exercise 6.5.1.

Linear and normal processes
All the time series models of Chapter 5 could have been introduced as Markov processes through a
sequence of conditional distributions. As an example, consider the Vasicĕk model in the form (??)
which reads (k = 1, 2, . . .)

rk = rk−1 + (1− a)(ξ − rk−1) + σεk = ξ + a(rk−1 − ξ) + σεk.

Here ε1, ε2, . . . are independent with zero mean and unit variance. Suppose they are normal too.
Then

rk|rk−1 = r ∼ N(ξ + a(r − ξ), σ),

and we could iterate over k = 1, 2 . . . as above. No particular benefit over the approach in Chapter
5 results from this. Indeed, the dynamic properties of the model were in Section 5.6 derived without
introducing the normal.

The sequence r1, . . . , rk of interest rates now become jointly Gaussian (see Section 3.4), and it
is possible to write down its density function. However, except for model calibration (Chapter 7)
we rarely have much use for it. The general Gaussian density function reads

f(x) = (|2πΣ|)−1/2 exp{−1

2
(x− ξ)′Σ−1(x− ξ)} (1.33)

where ξ = (ξ1, . . . , ξn)′ is the vector of expectations, Σ the covariance matrix and |2πΣ| the deter-
minant of the matrix. This expression, though famous, plays no role in this book.

Example: The multinomial situation
One joint density function that will be used is the multinomial one which will be needed for
modelling delays in property insurance in Section 8.5. Multinomial sampling (Section 4.2) means
randomly selecting one label among K different ones. With n independent repetitions according
to the same probabilities p1, . . . , pK we are dealing with a multinomial sequence of trials, and
the number of times N1, . . . , NK the various labels appear has a multinomial distribution. Here
p1 + . . .+pK = 1. With K = 2 we are back to the familar binomial situations. Actually the general
case can be derived from this special one.
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The argument is carried out for K = 3. Write bin(n, p) for the binomial distribution based on
n trials and success probabiltiy p. Then with K = 3

N1 ∼ bin(n, p1), N2|N1 = n1 ∼ bin

(

n− n1,
p2

p2 + p3

)

, N3 = n− n1 − n2

the last one (NK) always being fixed by the K − 1 others. The conditional distribution of N2 is as
stated because the remaining n−n1 trials are either label 2 or 3. But the joint density function of
(N1, N2) then becomes

n!

n1!(n− n1)!
pn1

1 (1− p1)
n−n1 × (n− n1)!

n2!(n− n1 − n2)!

(

p2

p2 + p3

)n2
(

1− p2

p2 + p2

)n−n1−n2

,

and if this is multplied out, you will discover that many of the factor cancels. This leaves as the
joint density

n!

n1!n2!(n− n1 − n2)!
pn1

1 pn2

2 (1− p1 − p2)
n−n1−n2 =

n!

n1!n2!n3!
pn1

1 pn2

2 pn3

3

The general case is

Pr(N1=n1, . . . , NK=nK) =
n!

n1! . . . nK !
pn1

1 . . . pnK

K (1.34)

where n1 + . . . + nK = n.

1.6 Markov chains and life insurance

Introduction
Liability risk in life and pension insurance are based on probabilistic descriptions of life cycles,
as those in Figure 6.3. The individual on the left dies at 82 having retired 22 years earlier at 60,
whereas the other is a premature death at 52. A pension scheme consists of thousands (or millions!)
of members like those, each with his individual life cycle. Disability is a little more complicated,
since there might be transitions back and forth; see below. It is worth noting that a switch from
active to retired is determined by a clause in the contract, whereas death and disability must be
described in random terms.

Each of the categories of Figure 6.3 will be called a state. A life cycle is a sequence {Cl} of
such states with Cl being the category occupied by the individual at age yl = lh. We may envisage
{Cl} as a step function, jumping occasionally from one state to another. There are three of them
in Figure 6.3. This section demonstrates how such schemes are described mathematically. Do we
really need it? After all, uncertainty due to life cycle movements is rarely very important (see
Section 3.4). But that doesn’t mean that the underlying stochastic model is irrelevant. It is needed
both to compute the expectations defining the liabiltities and to evaluate portfolio uncertainty due
to errors in parameters.

Markov modelling
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Age (years)
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Active

Dead

Life cycle individual 2

Figure 6.3 The life cycles of two members of a pension scheme.

Consider random step functions {Cl} jumping between a limited number of states. The most fre-
quently applied model is the Markov chain. What makes such time series evolve is the so-called
transition probabilities

pl(i|j) = Pr(Cl+1 = i|Cl = j). (1.35)

Algorithm 6.2 tells us how life cycles governed by a Markov chains develop. At each point in time
there is a random experiment taking the state from its current j to a (possibly) new i. Note that
the probabilitites defining the model do not depend on the track record of the individual prior to
age l. That is the Markov assumption. Monte Carlo is a good way to understand how such models
work; see Exercises 6.6.2 and 6.6.5.

Transition probabilities are usually different for men and women (not reflected in the mathematical
notation), and it is (of course) essential that they depend on age l. A major part of them always
come from the survival probabilities 1pl introduced in Section 6.2. For a simple pension scheme,
such as in Figure 6.3, the three states ‘active’, ‘retired’ and ‘dead’ are linked with the transition
probabilities shown.

1pl active

active �
�

�
�*

H
H

H
Hj

1− 1pl dead

1pl retired

active �
�

�
�*

H
H

H
Hj

1− 1pl dead

1pl retired

retired �
�

�
�*

H
H

H
Hj

1− 1pl dead

Before retirement At retirement After retirement

The details differ according to whether we are before, at or after retirement. Note the middle dia-
gram in particular, where the individual from a clause in the contract moves from active to retired
(unless he dies).
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A disability scheme
Disability modelling, with movements back and forth between states, is more complicated. Consider
the following scheme.

disabled

active �
�

�
�*

H
H

H
Hj

�
�

�
��

?

dead

where

pi|a = Pr(disabled|active)

pa|i = Pr(active|disabled).

A person may become ‘disabled’ (state i), but there is also a chance that he returns to ‘active’
(state a). Such rehabilitations are not too frequent as this book is being written (2005), but it
could be different in the future, and we should certainly be able to to handle it mathematically.
New probabilities are then needed in addition to those describing survival. They have above been
denoted pi|aand pa|i. The former is the probability of moving from ‘active’ to ‘disabled’ and the
other the opposite.

The transition probabilities for the scheme must combine survival and disability/rehabilitation.
The full matrix are as shown:

To new state
From Active Disabled Dead Row sum

Active 1pl · (1− pi|a) 1pl · pi|a 1− 1pl 1

Disabled 1pl · pa|i 1pl · (1− pa|i) 1− 1pl 1

Dead 0 0 1 1

Each entry is the product of input probabilities. For example, to remain active (upper left cor-
ner) the indvidual must survive and not become disabled, and similar for the others. Note the
row sums. They are always equal to one (add them and you discover that it is true). Any set of
transition probabilities for Markov chains must satisfy this restriction, which merely reflects that
the individual always moves somewhere or remains in the same state.

Numerical example
Figure 6.4 shows a portfolio development that might occur in practice. The survival model was the
same as in Section 3.4, i.e.

log(1pl) = −0.0009 − 0.0000462 exp(0.090767 × l)

Their corresponding annual mortalitites 1ql = 1−1pl are plotted in Figure 6.4 left. Note the steep
increase on the right for the higher age groups where the likelihood of dying within the coming
year has reached 2% and more.

This model corresponds to an average length of life of 75 years and will be further discussed
in Chapter 12. It is reasonably realistic for males in a developed country. Disability depends
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Disability scheme: Portfolio simulation

Figure 6.4 A disability sceme in life insurance: Mortality model (left) and portfolio simulation

(right).

on the current political climate and on economic cycles and is harder to hang numbers on. The
computations in Figure 6.4 are based on

pi|a = 0.7%, and pa|i = 0.35%,

which are values invented. Note the rehabilitation rate, which may be much too high. In practice
both probabilities might depend on age.

How individuals distribute between the three states are shown in Figure 6.4 right for a portfolio
originally consisting of one million 30-year males. The scenario has been simulated using Algorithm
6.2 (details in Exercise 6.6.2). There is very little Monte Carlo uncertainty in portfolios this size
and one single run is enough. At the start all are active, but with age the number of people in
the other two classes grow. At 65 years some 75% remain alive, a realistic figure. What is not
necessarily true in practice is the downwards curvature in the disability curve which might have
been upwards if the disability rate is made age-dependent.

1.7 Introducing copulas

Introduction
The copula concept is an old one, going back to the mid twentieth century. Yet it is only in fairly
recent years it has attracted interest as a tool for actuarial and financial risk. An early contribution
is Carriere (1987). The idea has much to do with sampling by inversion; see Chapter 2. Let X1 and
X2 be random variables with strictly increasing distribution functions F1(x1) and F2(x2). Then

X1 = F−1
1 (U1) and X2 = F−1

2 (U2),
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where U1 and U2 are uniformly distributed. They do not have to be independent which is precisely
where coupla modelling comes in Dependence are now formulated in terms of U1 and U2, which
are then mapped back to X1 and X2. Note that the dependence now has become a modelling
issue completely detached from the distributions of X1 and X2. The power of this idea will emerge
below. All bivariate and (more generally multivariate) stochastic models can be represented in this
way.

Copulas differ from the other approaches to modelling in this chapter in that it is non-constructive.
The way it is defined does not give a simple recepy for how such models are simulated in the
computer. That is an area begging for development. What is available has influenced the way this
section has been written. One model with attractive theoretical properties and at the same time
easy to simulate is the Clayton family. This is one of the most frequently applied copulas, member
of the Archimedean class, also widely used. Most of the section is devoted to those. We start
bivariately and extend to J variables at the end.

What is a copula?
A copula is a joint distribution function for dependent uniform random variables. In the bivariate
case this means the function

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2), (1.36)

defined for all u1 and u2 between 0 and 1. For a valid model we must require C(u1, u2) to be
non-decreasing in both u1 and u2 and

C(u1, 0) = 0, C(0, u2) = 0 (1.37)

C(u1, 1) = u1, C(1, u2) = u2

for all u1 and u2. For example

C(u1, 1) = Pr(U1 ≤ u1, U2 ≤ 1) = Pr(U1 ≤ u1) = u1,

and similar for the others. Any function C(u1, u2) serving as a copula must satisfy (1.37).

The most immediate example is

C(u1, u2) = u1u2

making U1 and U2 independent. More interesting is the Clayton copula for which

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ, 0 < u1, u2 < 1, (θ > 0) (1.38)

Here θ is a positive parameter (negative ones will be allowed later). It is easily verified that (1.37)
is satisfied. The independent copula appears in the limit as θ → 0; see Exercise ?. The Clayton
model has a number of attractive properties and is one of the most useful couplas.

Copula modelling
The previous discussion has suggested the following modelling strategy. Start by finding appro-
priate distribution functions F1(x1) and F2(x2) for X1 and X2 and then throw a copula C(u1, u2)
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around them to account for dependency. From what was said above the joint distribution function
for the pair (X1,X2) becomes

F (x1, x2) = C(u1, u2) where u1 = F1(x1), u2 = F2(x2).
copula modelling univariate modelling

(1.39)

This is actually a general representation, discovered by Sklar (1959) and bears his name. Any
bivariate distribution function F (x1, x2) can be written in this form, provided the marginal distri-
bution functions F1(x1) and F2(x2) are strictly increasing. A modified version holds for counts3,
and Sklar’s result can be extended to any number of variables.

In (1.39) either of the relationships on the right may be replaced by their anti-tetic twin (see
Section 4.5). This produces the three additional versions

u1 = F1(x1), 1− u2 = F2(x2) orientation (1,2)

1− u1 = F1(x1), u2 = F2(x2) orientation (2,1)

1− u1 = F1(x1), 1− u2 = F2(x2) orientation (2,2),

(1.40)

all combined with the same copula on the left in (1.39). The effect (see Figure 6.5) is to rotate the
copula patterns 90◦, 180◦ and 270◦ compared to the orginal one which will be called orientation
(1, 1).

The Clayton copula
The copula bearing the name of the British statistician David Clayton was introduced above. Its
defintion through (1.38) can be extended to include negative θ down to −1, provided the mathe-
matical expression is modified to

C(u1, u2) = max{(u−θ
1 + u−θ

2 − 1)−1/θ, 0} (θ ≥ −1). (1.41)

Again it is easy to check that the copula requirements (1.37) are satisfied when θ ≥ −1. For
negative θ, the expression is positive when

u2 > (1− u−θ
1 )−1/θ.

Below that threshold the copula is zero; see also Figure 6.6 right. Usually restrictions of that kind
are undesirable. Still, when the negative part is incuded, the family in a sense cover the entire
range of dependency that is logically possible; see Exercises ?? and ??.

Examples of structures generated by the Clayton copula are shown in Figure 6.5. The two marginal
distributions were normal with mean ξ = 0.005 and volatility σ = 0.05, precisely as in Figure 3.3.
Most striking is the cone-shapes patterns which signify unequal degree of dependence in unequal
parts of the space. Consider, for example, the plot in the upper, left corner where correlation in
downside returns are much stronger than for upside ones. Such phenomena have been detected in
practice; see Longin and Solnik (2002). Consequences for downside risk could be serious. Ordinary
Gaussian models can’t capture this. The other plots in Figure 6.5 rotate patterns by varying the
orientation of the copula. Dependence is adjusted by moving the Clayton parameter θ (high values

3The distribution functions are then not strictly increasing, as demanded by the theorem.
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Figure 6.5 Simulated financial returns from normals and Clayton copula.

for strong dependence).

Conditional distributions for copulas
As elsewhere it is useful to examine the conditional models. Let

C(u2|u1) = Pr(U2 ≤ u1|u1)

be the conditional distribution function of U2 given U1 = u1. This turns out to be the partial
derivative of the orginal copula with respect to u1, i.e.

C(u2|u1) =
∂C(u1,u2)

∂u1
; (1.42)

see Section 6.8.

For the Clayton copula (1.38) straightforward differentiaton yields

C(u2|u1) = u
−(1+θ)
1 (u−θ

1 + u−θ
2 − 1)−(1+1/θ), (1.43)

where

0 < u2 < 1 for θ > 0,

(1− u−θ
1 )−1/θ < u2 < 1 for −1 ≤ θ < 0

21



Second uniform
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

First uniform = 0.1

First uniform = 0.9

Clayton parameter: 5.0

Second uniform
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

First uniform = 0.9

First uniform = 0.1

Clayton parameter: -0.75

Figure 6.6 Conditional distribution functions for the second variable of a Clayton copula; given
first variable marked on each curve.

Below the lower threshold C(u2|u1) = 0. The conditional distribution functions have been plotted
in Figure 6.6 for θ large and positive on the left and large and negative on the right. Shapes for
u1 = 0.1 and u2 = 0.9 differ markedly, attesting to strong dependency, but the most notable feature
is a lack of symmetry. Consider the distributions on the left. When u1 = 0.1, the second variable
U2 is located in a narrow strip around that value, (i.e. very strong correlation), but if u1 = 0.9, the
range of variation for U2 is much larger. It is precisely this feature that creates the cones in Figure
6.5; see also Exercise ?? and ??.

How copula models can be simulated
The most obvious way of sampling copulas is to combine conditional sampling and inversion, as
follows:

Algorithm 6.3 Bivariate copulas
0 Input: The conditional copula C(u2|u1)
1 Draw U∗

1 and V ∗ ∼ uniform
2 Determine U∗

2 from

C(U∗
2 |U∗

1 ) = V ∗ %Equation, often demanding a numeric solution

3 Return U∗
1 and U∗

2 .

The second step is an application of the inversion algorithm, and here there is a problem. For
most copulas analytical solutions do not exist, and a numerical procedure has to be used. This
obstacle isn’t insurmountable, but it does slow the procedure down, especially when there are
more than two variables. The Clayton copula is an exception. It is easy to see that the distri-
bution function (1.43) admits an easy solution. The details are worked out at the end of the section.
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Output from Algorithm 6.2 must be combined with inversion to generate the original variables
X1 and X2. Details depend on the orientation. The two most important ones are

X∗
1 = F−1(U∗

1 ) X∗
2 = F−1

2 (U∗
2 ) and X∗

1 = F−1(1− U∗
1 ), X∗

2 = F−1
2 (1− U∗

2 ).

For other possibilites; see Exercise ??.

Archimedean copulas
Perhaps the most important general class of copulas is the Archimedean one where

C(u1, u2) = φ−1{φ(u1) + φ(u2)}. (1.44)

Here the function φ(u) is a so-called generator. The Clayton copula is a special case. Its generator
and generator inverse are

φ(u) =
1

θ
(u−θ − 1), and φ(x)−1 = (1 + θx)−1/θ, (1.45)

where the inverse is found by solving φ(u) = x for u. If these expressions are inserted into (1.44),
the earlier expression for the Clayton copula emerges.

The Clayton generator is plotted in Figure 6.7 left for θ = 0.2. It is

• strictly decreasing and continous,
• with φ(1) = 0 and becomes infinite as u→ 0.

These ensure that the conditions (1.37) are satisfied. The other example in Figure 6.7 is

φ(u) = (1− u)3, 0 < u < 1,

an example of a polynomial copula. It satisfies all the conditions above with one exception. As
u→ 0 it remaining finite. A valid copula is still defined (Exercise 6.7.7), but it inevitably leads to
models where certain combinations of u1 and u2 are forbidden. Clayton copulas based on negative
θ) have the same property, and usually we do not want it. It is avoided if the generator is infinite
at the origin. Nelson (1997) lists many possibilities.

Both examples in Figure 6.7 are convex (curvature upwards). This is a natural additional con-
dition. The derivative φ′(u) is then increasing and possesses and inverse. It follows (Section 6.8)
that the equation in Algorithm 6.3 can be solved producing a simple sampling algorithm:

Algorithm 6.4 Archimedean copulas
0 Input: Convex generator φ(u).
1 Draw U∗

1 and V ∗ ∼ uniform
2 Y ∗ ← φ′−1{φ′(U∗

1 )/V ∗} % Note: φ′(u) the derivative of φ(u)

3 U∗
2 = φ−1{φ(Y ∗)− φ(U∗

1 )}
4 Return U∗

1 and U∗
2
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Figure 6.7 Generator functions for Archimedean copulas

If φ′−1(x) is difficult to find, it can be tabulated on a tight set of points prior to running the
algorithm. Table methods for sampling were discussed in Section 4.3.

Copulas with many variables
Some of the ideas and results above extend to J variables without much effort. A J-dimensional
copula C(u1, . . . , uJ ) is the joint distribution function of J dependent uniform random variables
U1, . . . , UJ . Mathematical conditions similar to (1.37), but more complex have to be satisfied.
There is an Archimedean type which is an immediate extension of (1.44); i.e.

C(u1, . . . , uJ) = φ−1{φ(u1) + . . . + φ(uJ )}. (1.46)

Here φ(u) is a generator of exactly the same type as in the bivariate case. The J uniforms are
mapped back to the J original variables X1, . . . ,XJ through the J inversions

X1 = F−1
1 (U1), . . . , , XJ = F−1

J (UJ ).

There are now 2J ways to rotate patterns through use of anti-tetic twins, not just 4.

Archimedean copulas are still convenient to sample, but a general extension of Algorithm 6.4
involves complex chains of derivatives of high order, beyond what is natural to include. For the
Clayton copula matters simplify. The following sampling algorithm is justified in Section 6.8:

Algorithm 6.5 The Clayton copula for J variables
0 Input: θ
1 S∗ ← 0 and P ∗ ← 1 %Initializing auxilliary quantities

2 Draw U∗
1 ∼ uniform

3 For j = 2, . . . , J do
4 S∗ ← S∗ + (U∗

j−1)
−θ − 1 %Updating from preceding uniform
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5 P ∗ ← P ∗(U∗
j−1)

1+θ/(1 + (j − 1)θ) %New update

6 Draw V ∗ ∼ uniform
7 U∗

j ← {(P ∗V ∗)−θ/(θ+j−1) − S∗}−θ %Next uniform

8 Return U∗
1 , . . . , U∗

J

This algorithm has been used for copula simulations in this book.

1.8 Mathematical arguments

Section 6.3
Portfolio risk We shall verify the formula (1.22) for the standard deviation of the portfolio risk
X starting with

var(X ) = var(N )ξ2
z + E(N )σ2

z ,

which is the right hand side of (1.19). Expressions for E(N ) and var(N ) were given in (1.17)
and (1.18). Those are

E(N ) = JξµT and var(N ) = JT 2(γσ2
µ + ξµ/T )

where γ = J or γ = 1 for common and independent sampling of the intensities. Inserting into the
expression for var(X ) yields

var(X ) = JT 2(γσ2
µ + Jξµ/T )ξ2

z + JξµTσ2
z = JTξµ(σ2

z + ξ2
z) + JT 2γσ2

µ.

or

var(X ) =
(

JTξµ(σ2
z + ξ2

z)
)

×
(

1 + γT
σ2

µ

ξµ

ξ2
z

ξ2
z + σ2

z

)

,

which is (1.22).

Section 6.7.
Conditional distributions for copulas Recall that

C(u1, u2) =

∫ u1

0

∫ u2

0
h(v1, v2) dv1 dv2,

writing c(u1, u2) for the (joint) density function. Hence

∂C(u1, u2)

∂u1
=

∫ u2

0
c(u1, v2) dv2,

or, since c(u1) ≡ 1 is the density for U1

∂C(u1, u2)

∂u1
=

∫ u2

0
c(v2|u1) dv2,

where c(u2|u1) is the conditional density of U2. This is (1.42).
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Justifying Algorithm 6.4 An Archimedean copula C(u1, u2) is according to (1.44) defined
through

φ{C(u1, u2)} = φ(u1) + φ(u2).

When both sides are differntiated with respect to u1, it follows by the chain rule that

φ′{C(u1, u2)}
∂C(u1, u2)

∂u1
= φ′(u1).

so that

C(u2|u1) =
φ′(u1)

φ′{C(u1, u2)

is the conditional distribution function of U2. It follows by the inversion algorithm that a simulation
U∗

2 is the solution of the equation

φ′(U∗
1 )

φ′{C(U∗
1 , U∗

2 )
= V ∗

where U∗
1 and V ∗ are independent and uniform. This may equivalently be written

C(U∗
1 , U∗

2 ) = Y ∗ where Y ∗ = φ′−1{φ′(U∗
1 )/V ∗},

which is the quantity on line 2 in Algorithm 6.4. Hence

φ(U∗
1 ) + φ(U∗

2 ) = φ(Y ∗)

and when this is solved for U∗
2 , Algorithm 6.3 follows.

Justifying Algorithm 6.5 When the Clayton generator and inverse (1.45) are inserted into (1.46),
it follows that the mathematical expression for the J-dimensional Clayton copula is

C(u1, . . . , uJ) = {
J
∑

j=1

u−θ
j − (J − 1)}−1/θ.

We shall find the conditional distribution function for UJ given the J − 1 others which equals the
partial derivative with respect to u1, . . . , uJ−1; i.e.

∂J−1C(u1, . . . , uJ )

∂u1 . . . ∂uJ−1
.

It is straightforwardly derived that

∂J−1C(u1, . . . , uJ )

∂u1 . . . ∂uJ−1
= {

J
∑

j=1

u−θ
j + J − 1)}−(1/θ+J−1) ×

J−1
∏

j=1

{u−(1+θ)
j (1 + (j − 1)θ)}

or

∂J−1C(u1, . . . , uJ )

∂u1 . . . ∂uJ−1
= {u−θ

J + sJ−1}−(1/θ+J−1)/pJ−1
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where

sJ−1 =
J−1
∑

j=1

u−θ
j − (J − 1) and pJ−1 =

J−1
∏

j=1

{u1+θ
j /(1 + (j − 1)θ)}

Suppose U∗
1 , . . . , U∗

J−1 have been generated and V ∗ is another uniform, drawn indepdently. Apply-
ing inversion we must solve with respect to U∗

J the equation

∂J−1C(U∗
1 , . . . , U∗

J )

∂u1 . . . ∂uJ−1
= V ∗.

The Monte Carlo versions of sJ−1 and pJ−1 are

S∗
J−1 =

J−1
∑

j=1

(U∗
j )−θ − (J − 1) and P ∗

J−1 =
J−1
∏

j=1

{(U∗
j )1+θ/(1 + (j − 1)θ)},

and the equation for U∗
J becomes

{(U∗
J )−θ + S∗

J−1}−(1/θ+J−1)/P ∗
J−1 = V ∗

with solution

U∗
J = {(P ∗

J−1V
∗)−θ/{1+θ(J−1)} − S∗

J−1}−1/θ.

This is how the J ’th uniform is generated from the J − 1 preceding ones. Algorithm 6.5 makes use
of this procedure for J = 2, 3, . . . updating the auxilliary quantities S∗

J−1 and P ∗
J−1 recursively as

we go along.

1.9 Further reading

1.10 Exercises

Section 6.2
Exercise 6.2.1 The following experiment illustrates the concept of conditional distributions. Let aj =
−0.5 + j/10, for j = 0, 1, . . . , 10. a) Simulate (X∗

1i, X
∗
2i) for i = 1, . . . , 10000 from the bivariate normal

with ξ1 = ξ2 = 5%, σ1 = σ2 = 25% and ρ = 0.5. b) For j = 1, 2, . . . , 9, select those pairs for which
aj−1 < X∗

1i ≤ aj and compute their mean ξ|j and standard deviation σ|j . c) Plot ξ|j and σ|j against the
mid-points (aj−1 + aj)/2, and interprete the plots in terms of the conditional density function (1.3). d)
repeat a), b) and c) with ρ = 0.9 and comment on how the plot changes.

Exercise 6.2.2 Consider a time series {Xk} of random variables such that the conditional distribution
of Xk given all preceding ones are normal with

E(Xk|xk−1, xk−2, . . .) = xk−1 + ξ and sd(Xk|xk−1, xk−2, . . .) = σ.

Which of the times series models in Chapter 5 is this? see also Exercise 6.5.1.

Exercise 6.2.3 Let Z be a positive random variable and suppose X given Z = z is normal with

E(X|z)) = ξ and sd(X |z) = σ0

√
z.
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Which model from Chapter 2 is this?

Exercise 6.2.4 Let the survival probabiltities be those used in Section 3.4.; i.e.

log(1pl) = −0.0009− 0.0000462 exp(0.090767× l).

a ) For l = 40 and l = 70 years, compute kpl as given in (1.6) and plot them as a function of k for
k = 1, 2, . . . , 30.

Exercise 6.2.5 Let N be an integer-valued random variable. a) Show that

∞
∑

n=1

Pr(N ≥ n) =

∞
∑

n=1

∞
∑

k=n

Pr(N = k) =

∞
∑

k=1

k
∑

n=1

Pr(N = k) =

∞
∑

k=1

kPr(N = k)

so that

E(N) =

∞
∑

n=1

Pr(N ≥ n).

Let Nl be the remaining length of life for somebody having reached l years. b) Use a) to establish that

E(Nl) =

∞
∑

k=1

kpl.

Exercise 6.2.6 Let X be an exponentially distributed random variable with density function f(x) =
β−1 exp(−x/β) for x > 0. Show that in (1.8) fa(y) = f(y).

Exercise 6.2.7 Suppose that f(x) = β−1α/(1 + x/β)1+α for x > 0 (this is the Pareto density). a) Show
that

fa(y) =
α/(a + β)

{1 + y/(a + β)}1+α
if fa(y) =

α/β

(1 + y/β)1+α

b) Interprete this result; i.,e what is the over-threshold distribution if the parent model is Pareto?

Exercise 6.2.8 A simple (but much less used) alternative to the gamma model to describe variation in
the claim intensity µ is the log-normal. The model for portfolio claims then reads

N|µ ∼ Poisson(JµT ) µ = ξ exp(−1

2
σ2 + σε), ε ∼ N(0, 1).

a) Show that

E(µ) = ξ and sd(µ) = ξ
√

exp(σ2)− 1

b) Determine σ so that sd(µ) = 0.1 × ξ. c) Run and plot simulations of N similar to those in Figure 6.2,
using ξ = 5% and σ as you determined it in b). Take both J = 104 and J = 106 as portfolio size. d) Any
conclusions that differ from those connected to Figure 6.2 in the text?

Section 6.3
Exercise 6.3.1 Suppose claim frequency N ∼Poisson(JµT ). Show that the formulas (1.19) for mean and
variance of the total claim X nowx become

E(X ) = JµTξz and sd(X ) =
√

JµT (ξ2
z + σ2

z).

28



Exercise 6.3.2 Suppose claim intensities µ vary independently from one policy holder to another so that

sd(X ) =
√

Jξµ(σ2
z + ξ2

z)×
√

1 + δ where δ =
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
;

see (1.21) and (1.22). a) Show that δ ≤ σ2
µ/ξµ. b) Argue that the case ξµ = 5% and σµ = 5% would exhibit

huge variability in claim intensity. c) Use a) to show that
√

1 + δ ≤ 1.023 under the specification in b) and
argue that the added portfolio risk due to the hetereogenity in µ accounts for no more than 2.3% of the total
value of sd(X ). This strongly suggests that at portfolio level the impact of risk hetereogenity usually can be
ignored. The next exercise treats a related case where the conclusion is very different.

Exercise 6.3.3 As in Exercise 6.3.2 assume that µ varies randomly, but now as a common parameter
for all policy holders. a) Go back to (1.21) and explain why the factor

√
1 + Jδ =

√

1 + J
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
;

accounts fot the effect of the µ-variablity on sd(§). b) Compute it when

ξ = 5%, σµ = 1%,
σz

ξz
= 0.5 J = 100000.

Any comments? c) Show that the factor
√

1 + Jδ increases with the ratio σz/ξz . Is the impact of µ-variability
larger or smaller for heavy-tailed claim size distributions than for lighter ones?

Exercise 6.3.4 Suppose that X1, . . . , XJ are conditionally independent and identically distributed given a
common factor ω. a) Explain that (1.15) now becomes

E(X ) = JE{ξ(ω)} and sd(X ) = J
√

var{ξ(ω)}+ E(σ2(ω)}/J,

where ξ(ω) and sd(ω) are the conditional mean and standard deviation. b) Show that

sd(X )

E(X )
→ sd{ξ(ω)}

E{ξ(ω)} as J →∞.

c) What this tell you about risk diversification models with common factors? This result throws light on
the conclusion in Exercise 6.3.3

Exercise 6.3.5 Let N ∗ be a simulation of a Poisson claim frequency N where the intensity µ has been
estimated as µ̂. If T = 1, this means that N ∗|µ̂ is Poisson(Jµ̂). a) Use the double rules to prove that

E(N ∗) = JE(µ̂) and var(N ∗) = JE(µ̂) + J2var(µ̂).

b) Recall that E(N ) = var(N ) for a Poisson variable N whereas E(N ∗) < var(N ∗). What causes the
difference? Integration of random error from different sources is discussed in Chapter 7.

Exercise 6.3.6 Suppose X∗ ∼ N(ξ̂, σ̂) where ξ̂ and σ̂ are estimates of ξ and σ from historical data.
This should be interpreted as X∗ having a conditional distribution given the estimates. a) Argue, using the
double rules, that

E(X∗) = E(ξ̂) and var(X∗) = E(σ̂2) + var(ξ̂)
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b) Suppose that var(ξ̂) = σ2/n and that E(σ̂2) = σ2 (which you recognize as a standard situation with n
historical observations). Show that

var(X∗) = σ2(1 +
1

n
).

Exercise 6.3.7 The double rule for variances can be extended to a version for covariances. Let

ξ1(x) = E(Y1|x), ξ2(x) = E(Y2|x) and σ12(x) = cov(Y1, Y2)|x)

for random variables Y1, Y2 conditioned on X = x. Then

cov(Y1, Y2) = cov{ξ2(X), ξ1(X)} + E{σ12(X)};

see Appendix A. Use this to find the covariances bewteen returns R1 and R2 satisfying the stochastic volatility
model in Section 2.4; i.e

R1 = ξ1 + σ01

√
Zε1 and R2 = ξ2 + σ02

√
Zε2

where ε1, ε2 and Z are independent and the two former are N(0, 1) with correlation ρ.

Section 6.4
Exercise 6.4.1 Let X1 and X2 be dependent normal variables with expectations ξ1 and ξ2, standard devi-
ations σ1 and σ2 and correlation ρ. a) Use (1.3) to justify that

X̂2 = ξ2 + ρσ2
x1 − ξ1

σ1
for X1 = x1

is the most accurate prediction of X2 if X1 is observed. b) Show that

sd(X̂2|x1)

sd(X2)
=
√

1− ρ2.

c) By how much is the uncertainty in X2 reduced by knowing X1 if ρ = 0.3, 0.7 and 0.9? Argue that ρ
should from this viewpoint be interpreted through ρ2, as claimed in Section 5.2.

Exercise 6.4.2 Claim intensities µ in automobile insurance depends on factors such as age and sex. Con-
sider a female driver of age x. A standard way to formulate the link between x and µ goes through the
conditional mean E(N |x), where N is claim frequency. One possibility is

µ = µ0e
−β(x−x0),

where x0 is the starting age for drivers and µ0 and β0 are parameters. a) What is the meraning of the
parameters µ0 and β? b) Determine them so that µ = 10% at age 18 and 5% at age 60 and plot the
relationship between x and µ. In practice a more complex relationship is often used; see Chapter 8.

Exercise 6.4.3 Let

ξ = 5%, a = 0.5 σ = 0.016, r0 = 2%

in the Vasicĕk model for interest rates. a) Write down predictions for the rate of interest rk at k = 1, 2, 5
and k = 10 years, using (??). b) What is standard standard deviation of the prediction error? Use (??) and
compare the assessment for k = 1 and k = 5 with those in Section 6.4 coming from a related (but different)
set of parameters.
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Exercise 6.4.4 Conside the Black-Karisisnski model defined in Section 5.7 under which

rk = ξ exp(−1

2
σ2

x + Xk) where σx =
σ√

1− a2
, Xk = aXk−1 + σεk.

Here ε1, ε2, . . . are all independent and N(0, 1). a) If r0 is the current rate of interest observed in the market,
aregue that

r̂k = ξ exp(−1

2
σ2

x + akx0) where x0 = log

(

r0

ξ
+

1

2
σ2

x

)

is a prediction of the future rate rk. b) Make the prediction for k = 1, 2, 5 and k = 10 years as in the
preceding exercise and use the same parameters as there. Compare forecasts under the two models. This
example will be examined further in Exercise 7.?.

Exercise 6.4.5 Algorithm 6.1 dealt with the forward rate of interest under the Vasiceĕk model. a) Modify
it so that it applies to the Black-Karisisnksi model [Hint: You replace Line 3 with parts of Algorithm 5.4.].
b) ???

Section 6.5
Exercise 6.5.1 Suppose the time series {Xk} is a Gaussian Markov process for which

Xk|Xk−1 = x ∼ N(ax, σ).

Which model from Chapter 5 is this?

Exercise 6.5.2 Suppose X1, . . . , XJ are conditionally normal given Z = z with expectations ξi and vari-
ance/covariances σijz. a) Which model from earlier chapters is this? b) Do the correlations depend on z?
Which model from Chapter 5 is this?

Exercise 6.5.3 Consider Algorithm 6.2, the skeleton for Markov sampling. a) Modify it to deal with
common factors; i.e explain that X∗

k on Line 3 now is drawn from f(xk|X∗
1 .

Exercise 6.5.4 This exercise shows how a stochastic volatiltiy model for log-returns are sampled by means
of the preceding exercise. Suppose

Z = exp(−1

2
τ2 + τε), ε ∼ N(0, 1)

is log-normal and that

X1 = log(1 + R1), X2 = log(1 + R2), X3 = log(1 + R3)

are conditionally normal with expectations ξ1, ξ2, ξ3, volatilities σ01sqrtz, σ02
√

z, σ03
√

z and correlations ρij .
a) Explain how the log-returns are samples. b) Carry out the sampling 1000 times when

ξ1 = ξ2 = ξ3 = 5%, σ01 = σ02 = σ03 = 0.2, all ρij = 0.5 and τ = 0.5.

c) Use b) to compute the 5% lower percentile of the portfolio with equal weights on the three risky assets.

Exercise 6.5.5 Stochastic volatility in finance is in reality a dynamic phenomenon where the random
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variable Z = Zk being responsible are correlated in time. The first model proposed to deal with this is
known as ARCH4 and can be formulated as follows:

Rk = ξ + σ0

√
Zkεk where Zk =

√

1 + θ(Rk−1 − ξ)2

where ε1, ε2, . . . are independent and N(0, 1). a) Argue that returns deviating strongly from the mean ξ
makes volatility go up next time. b) Why is this a Markov model for the series {Rk}? c) Simulate the
model and plot the against time k for k = 1, . . . , 30 when

ξ = 5%, , σ0 = 0.2 and θ = 0.2 starting at R0 = 5%.

These are annual parameters. Plot ten different scenarios.

Exercise 6.5.6 An alternative to ARCH of the preceding is to use the Black-Karisinski model from Section
5.7 for {Zk}, i.e to take

Zk = exp(−1

2
τ2
y + τyYk) where τy =

τ√
1− a2

, Yk = aYk−1 + τηk.

Here both sequences η1, η2 . . . and ε1, ε2, . . . are independent N(0, 1) and independent from each other. a)
Simulate and plot ten realisations of this model under the same conditions as in the previous exercise using
a = 0.6 and τ = 0.1. b) Is there in behaviour a principal difference form the ARCH model. This model
type, though less used than the former (and, especially its extensions) is drawing much interest as this book
is being written (2004).

Exercise 6.5.7 The multinomial model illustrates the factorization (1.29). Start by noting that N0 ∼Binomial(n, q0).
a) Then argue that

N1|n0 ∼ Binomial(n− n0, q̃1) where q̃1 =
q1

1− q0
.

[Hint: From n trials originally, subtract those (= n0) with no delay. Among the remaining n− n0 trials the
likelihood is q̃1 for delay exactly one year.]. Suppose a binomual sampling procedure is available. b) Justify
that (N0, N1) can be sampled through

N∗
0 ∼ Binomial(n, q0) and N∗

1 ∼ Binomial(n−N∗
0 , q̃1)

The next step is

N∗
2 |n0, n1 ∼ Binomial(n− n0 − n1, q̃2) where q̃2) =

q2

1− q0 − q1
.

c) Explain why the general case can be run as follows:

Algorithm 6.6 Multinomial sampling
0 Input n and q0, . . . , qK

1 S∗ ← 0, d← 1
2 For k = 1, . . . , K − 1 do
3 Draw N∗

k ∼Binomial(n− S∗, p∗k/d)
4 S∗ ← S∗ + N∗

k , d← d− pk

5 Return N∗
1 , . . . , N∗

K−1 and N∗
K ← n− S∗.

4ARCH stands for autoregressive, conditional, hetereochedastic.

32



This is inefficient for large K, but tolerable for delay. d) Run the algorithm 10000 times when

K = 4, q0 = 0.1, q1 = 0.3 q2 = 0.25, q3 = 0.2, q4 = 0.15.

and compare relative frequencies with the underlying probabiltites.

Exercise 6.5.8 We know from the preceding exercise that

Pr(N0 = n0) =
n!

n0!(n− n0)!
qn0

0 (1− q0)
n−n0

and that

Pr(N1 = n1|n0) =
(n− n0)!

n1!(n− n0 − n1)!
q̃n1

1 (1 − q̃1)
n−n0−n1 .

Multiply the two probabilities together and verify that

Pr(N0 = n0, N1 = n1) =
n!

n0!n1!(n− n0 − n1)!
qn0

0 qn1

1 (1− q0 − q1)
n−n0−n1 .

This is the multinomial density function (1.34) for K = 2 (note that N2 = n − n0 − n1 is fixed by the two
first). The general case is established by continuing in this way.

Section 6.6
Exercise 6.6.1 Consider a Markov chain {Ck} running over the three states “active”, “disabled” and ”dead”
with pa|d and pa|d as probabilities of going from “disabled” to “active” and “active” to “disabled” and with
probability of survival 1pl at age l. a) Argue, using conditioning, that the probability at age l of remaining
active must be 1pl(1− pa|d). b) Fill out the rest of the table of transition probabilities at page ?, using the
same reasoning. c) Verify that the row sums are equal to one. d) What does the matrix become when

log(1pl) = −0.0009− 0.0000462 exp(0.090767× l), pd|a = 0.7%, pa|d = 0.35% ?

Exercise 6.6.2 Let the three states of the preceding exercise be labeled 0 (for “active”), 1 (“disabled”) and
2 (“dead”) and let pl(i|j) be their transition probabiltites at age l. a) Implement Algorithm 6.2 for the
model of the preceding exercise. For example, argue that the following recursive step can be used on Line 3:

Draw U∗ ∼ uniform and l← l + 1
If U∗ < pl(0|C∗

k−1) then C∗
k ← 0

else if U∗ < pl(0|C∗
k−1) + pl(2|C∗

k−1) then C∗
k ← 1

else C∗
k ← 2 and stop.

b) Run the algorithm ten times with the model of Exercise 6.1, each time starting at age l = 30 years
and plotting the the simulated scenarios 50 years ahead. c) Change the model unrealistically!) to pd|a = 0.4
and pa|d = 0.20, re-compute the transitiom matrix and re-run the simualtions to see different patterns.

Exercise 6.6.3 The expected remaining life-time at age l was derived an Exercise 6.2.5 as

E(Nl) =
∞
∑

k=1

kpl where kpl = 1pl+k−1 × · · · × 1pl

Consider the recursion

P ← 1pl × P, E ← E + P, l← l + 1
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starting at P = 1, E = 0. a) Argue that it yields E = E(Nl) at the end. b) Implement the recursion,
compute E(Nl) for l = 20, 25, 30, . . . up to l = 70 for the survival model in Exercise 6.6.1. c) Plot the
computed sequence against l and explain why it is decreasing.

Exercise 6.6.4 One of the issues with potentially huge impact on the business of life and pension in-
surance is the fact that in most countries length of life is steadily prolonged. Suppose we want to change
our current survival model into a related one in order to get a rough picture of the economic consequences.
A simple way is to introduce

1p̃l =
θ1pl

θ1pl + (1 − 1pl)
,

where θ is a parameter. a) Show that the new survival probability 1p̃l decreases with age l if the original
model had that property. b) Also show that it increases with θ and coincides with the old one if θ = 1. c)
Let 1pl be the model of Exercise 6.6.1. Use the program of Exercise 6.6.3 to compute the average, remaining
length of life for a twenty-year for θ = 1.0, 1.1, 1.2, . . . up to θ = 2 and plot the relationship. d) Use the plot
to find out roughly how large θ must be for the average age to be five years more than it was.

Exercise 6.6.5 Consider a policy holder entering a pension scheme at time k = 0 at age l0 and mak-
ing a contribution (premium) at the start of each period. From age lr he draws benefit ζ (also at the start
of each period) which lasts until the end of his life. There is a fixed rate of interest r. Let Vk be the value
of his account after time k. a) Argue that as long as the member stays alive, his account develops according
to the recursion

Vk = (1 + r)Vk−1 + π, k < lr − l0
= (1 + r)Vk−1 − ζ, k ≥ lr − l0

starting at V0 = π.

a) Write a program that allows the account to build up and then decline, the scheme terminating upon
death. b) Simulate and plot the movements of the account against time when

l0 = 30, lr = 65, π =? ζ =? r = 3%

and the survival model is the one in Exercise 6.6.1. c) Repeat b) nine times to judge variability. d) If you
apply the program ?? on ?? under the Cambrige website you can see how much the status of the account
varies when the scheme stops at the death of the policy holder. The plot is based on 10000 simulations under
the conditions above.

Section 6.7
Exercise 6.7.1 a) Show that when U1 is uniform and U2 = U1, then

Hma(u1, u2) = min(u1, u2), 0 ≤ u1, u2 ≤ 1.

is the copula for the pair (U1, U2). b) Prove the first half of the Frechet-Hoeffding inequality; i.e.

H(u1, u2) ≤ min(u1, u2), 0 ≤ u1, u2 ≤ 1.

for an arbitrary copula H(u1, u2). This shows that Hma(u1, u2) is a maximum copula.

Exercise 6.7.2 The second half of the Frechet-Hoeffding inequality apply to antitetic variables, introduced
in Chapter 4 to produce negatively correlated random variables. Let U1 be uniform and U2 = 1 − U1. a)
Show that the copula is

Hmi(u1, u2) = max(u1 + u2 − 1, 0),
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For an arbitrary copula H(u1, u2) fix u2 and define the function

G(u1) = H(u1, u2)− (u1 + u2 − 1).

b) Show that G(1) = 0 and that G′(u1) < 0 [Hint: Recall (1.42).]. c) Explain that this means that G(u1) > 0
so that

H(u1, u2) ≥ max(u1 + u2 − 1, 0),

and the antitetic pair defines a minimum copula.

Exercise 6.7.3 We might use the the preceding two exercises used to check whether a family of copu-
las capture the entire range of dependency. a) Show that the Clayton copula (1.41) coincides with the
minimum (antitetic) copula when θ = −1 and b) that it converges to the maximum copula as θ →∞ [Hint:
Utilize that the Clayton copula for θ > 0 may be written

exp{L(θ)} where L(θ) = log(u−θ
1 + u−θ

2 − 1)/θ

and apply l’Hôpital’s rule to L(θ).].

Exercise 6.7.4 Show that the Clayton copula (1.39) approaches the independent copula as θ → 0 [Hint:
Use the argument of the preceding exercise.].

Exercise 6.7.5 One of the most popular copula models is the Gumbel family for which

H(u1, u2) = exp{−Q(u1, u2)} where Q(u1, u2) = {(− log u1)
θ + (− log u2)

θ}1/θ.

a) Verify that this is a valid copula when θ ≥ 1 by checking (1.37). b) Which model corresponds to the
special case θ = 1? c) Which model appears as θ →∞? [Hint: One way is to utilize that

Q(u1, u2) = exp{L(θ)} where L(θ) = log[(− logu1)
θ + (− log u2)

θ]/θ}.
Apply l’Hôpital’s rule to L(θ).]

Exercise 6.7.6 Show that the Gumbel family of the preceding exercise belongs to the Archimedean class
with generator φ(u) = (− log u)θ.

Exercise 6.7.7 Let H(u1, u2) = φ−1{φ((u1) + φ(u2)} be a general Archimedean copula where it is as-
sumed that the generator φ(u) decreases continuously from infinity at u = 0 to zero at u = 1. a) Calculate
H(u1, 0) and H(0, u2) and verify that the first line in (1.37) is satisfied. b) Same question for the second
line and H(u1, 1) and H(1, u2).

Exercise 6.7.8 Consider the Archimedean copula based on the generator φ(u) = (1 − u)3. Derive an
expression H(u1, u2) and b) show that it is zero whenever u2 ≤ {1− (1− u1)

3}1/3.

Exercise 6.7.9 Suppose an Archimedean copula is based on a generator for which φ(0) is finite. Use
the fact that the generator is strictly decreasing to explain that the copula H(u1, u2) is positive if and only
if

φ(u1) + φ(u2) < φ(0) true if and only if u2 > φ−1{φ(0)− φ(u1)},
and the lower bound on u2 is normally positive. We rarely want models with this property.

Exercise 6.7.10 Consider the Clayton copula (1.38) with positive θ with generator φ(u) = (u−θ − 1)/θ.
Show that the key part of Algorithm 6.4 (lines 2 and 3) is solved by

U∗
2 = {1 + (U∗

1 )−θ[(V ∗)−θ/(1+θ) − 1]}−1/θ.
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