
1 Modelling 
laim size1.1 Introdu
tionModels des
ribing variation in 
laim size la
k the theoreti
al underpinning provided by the Poissonpoint pro
ess in Chapter 8. The traditional approa
h is to impose a family of probability distri-butions and estimate their parameters from histori
al 
laims z1; : : : ; zn (
orre
ted for in
ation ifne
essary). Even the family itself is often determined from experien
e. An alternative with 
onsid-erable merit in the 
omputer age is to throw all prior matemati
al 
onditions over board and relysolely on the histori
al data. This is known as a non-parametri
 approa
h. Mu
h of this 
hapteris on the use of histori
al data.How we go about is partly di
tated by the size of the re
ord, and here the variablity from one
ase to another is enormous. With automobile insuran
e the number of observations n may behuge, providing a good basis for dedu
ing the probability distribution of the 
laim size Z. By
ontrast, major in
idents in industry (like the 
ollapse of an oil rig!) are rare, making histori
almaterial s
ar
e. This span of variation is re
e
ted in the presentation below. Basi
 issues are para-metri
 versus non-parametri
 methods and (above all) the extreme right tail of distributions. La
kof histori
al data in the region that matters most �nan
ially suggests that this problem deservesspe
ial attention. The mathemati
al framework is mixing (Se
tion 9.5) in 
ombination with thetail 
hara
terization theorem from the theory of extremes (Se
tion 9.4).1.2 Parametri
 and non-parametri
 modellingIntrodu
tionClaim size modelling 
an be parametri
 through families of distributions su
h as the Gamma,log-normal or Pareto with parameters tuned to histori
al data or non-parametri
 where ea
h
laim zi of the past is assigned a probability 1=n of re-appearing in the future. A new 
laim is thenenvisaged as a random variable Ẑ for whi
hPr(Ẑ = zi) = 1n; i = 1; : : : ; n: (1.1)As model for Z this is an entirely proper distribution (sin
e its sum over all i is one). If it appearspe
uliar, there are a
tually several points in its favour (one in its disfavour too); see below. Notethe notation Ẑ whi
h is the familiar way of emphasizing that estimation has been involved. Themodel is known as the empiri
al distribution fun
tion and will in Se
tion 9.5 employed as abri
k in an edi�
e that also involves the Pareto distribution. The purpose of this se
tion is toreview parametri
 and non-parametri
 modelling on a general level.S
ale families of distributionsAll sensible parametri
 models for 
laim size are of the formZ = �Z0; (1.2)where � > 0 is a parameter, and Z0 is a standardized random variable 
orresponding to � = 1.This proportionality is inherited by expe
tations, standard deviations and per
entiles; i.e. if �0, �01



and q0� are expe
tation, standard deviation and �-per
entile for Z0, then the same quantities for Zare � = ��0; � = ��0 and q� = �q0�: (1.3)To see what � stands for, suppose 
urren
y is 
hanged as a part of some international transa
tion.With 
 as the ex
hange rate the 
laim quoted in foreign 
urren
y be
omes 
Z, and from (1.2)
Z = (
�)Z0. The e�e
t of passing from one 
urren
y to another is simply that 
� repla
es �, theshape of the density fun
tion remaining what it was. Surely anything else makes little sense. Itwould, for example, be 
ontrived to take a view on risk that di�ered in terms of US$ from that inBritish $ or euros, and the same point applies to in
ation (Exer
ise 9.2.1).In statisti
s � is known as a parameter of s
ale and parametri
 models for 
laim size shouldalways in
lude them. An example worth 
ommenting is the log-normal distribution used in earlier
hapters. If it is on the form Z = exp(� + �") where " is N(0; 1), we may also write itZ = �Z0 where Z0 = exp(�12�2 + �") and � = exp(� + �22 ):Here E(Z0) = 1, and � serves as both expe
tation and s
ale parameter. The mean is often themost important of all quantities asso
iated with a distribution, and it is useful to make it visibleas the s
ale parameter. Su
h ta
ti
s has in this book been followed whenever pra
ti
al.Fitting a s
ale familyModels for s
ale families satisfy the relationshipPr(Z � z) = Pr(Z0 � z=�) or F (zj�) = F0(z=�):where F0(z) is the distribution fun
tion of Z0. Di�erentiating with respe
t to z yields the familyof density fun
tionsf(zj�) = 1� f0( z� ); z > 0 where f0(z) = F 00(z): (1.4)Additional parameters des
ribing the shape of the distributions are hiding in f0(z). All s
ale fam-ilies have density fun
tions on this form.The standard way of �tting su
h models is through likelihood estimation. If z1; : : : ; zn are thehistori
al 
laims, the 
riterion be
omesL(�; f0) = �n log(�) + nXi=1 logff0(zi=�)g; (1.5)whi
h is to be maximized with respe
t to � and other parameters. Numeri
al methods are usuallyrequired. A useful extension 
overs situations with 
ensoring. Typi
al examples are 
laims onlyregistered as above or below 
ertain limits, known as 
ensoring to the right and left respe
tively.Most important is probably the situation where the a
tual loss is only given as some lower boundb. The probability of this happening is 1� F0(b=�) leading tof1� F0(b1=�)g � � � f1 � F0(bn=�)g 2



as the probability of nr su
h events. Its logarithm is added to the log likelihood (1.5) of the fullyobserved 
laims z1; : : : ; zn making the 
riterionL(�; f0) = �n log(�) + nXi=1 logff0(zi=�)g + nrXi=1 logf1� F0(bi=�)g; (1.6)
omplete information 
ensoring to the rightwhi
h is to be maximized. Censoring to the left is similar and dis
ussed in Exer
ise 9.2.3. Detailswill be developed for the Pareto family in Se
tion 9.4.Shifted distributionsSometimes the distribution of a 
laim starts at some some threshold b instead of at the orgin.Obvious examples are dedu
tibles and 
ontra
ts in re-insuran
e. Models 
an be 
onstru
ted byadding b to variables Z starting at the origin; i.e.Z>b = b+ Z = b+ �Z0:Now Pr(Z>b � z) = Pr(b+ �Z0 � z) = Pr�Z0 � z � b� � ;and di�erentiating with respe
t to z yieldsf>b(zj�) = 1� f0 �z � b� � ; z > b; (1.7)as density fun
tion for variables starting at b.Sometimes histori
al 
laims z1; : : : ; zn are known to ex
eed some unknown threshold b. Theirminimum provides an estimate, pre
iselyb̂ = min(z1; : : : ; zn)�C; for unbiasedness: C = � Z 10 f1� F0(z)gn dz; (1.8)see Exer
ise 9.2.4 for the unbiasedness 
orre
tion. It is rarely worth the trouble to take that tooseriously, and a

ura
y is typi
ally high even when it isn't done1. The estimate is known to besuper-eÆ
ient, whi
h means that its standard deviation for large sample sizes is proportional to1=n rather than the usual 1=pn; see Lehmann and Casella (1998). Other parameters 
an be �ttedby applying the methods below to the sample z1 � b̂; : : : ; zn � b̂.Skewness as simple des
ription of shapeA major issue in 
laim size modelling is the degree of asymmetry towards the right tail of thedistribution. A useful, simple summary is the 
oeÆ
ient of skewness de�ned as� = skew(Z) = �3�3 where �3 = E(Z � �)3: (1.9)1The adjustment requires C to be estimated. It is in any 
ase sensible to subtra
t some small numberC > 0 from the minimum to make zi � b̂ stri
tly positive. Software may 
rash otherwise.3



The numerator is the third order moment. Skewness should not depend on the 
urren
y beingused and doesn't sin
eskew(Z) = E(Z � �)3�3 = E(�Z0 � ��0)3(��0)3 = E(Z0 � �0)3�30 = skew(Z0)after inserting (1.2) and (1.3). Neither is the 
oeÆ
ient 
hanged when Z is shifted by a �xedamount; i.e. skew(Z + b) = skew(Z) through the same type of reasoning. These properties 
on�rmskewness as a (simpli�ed) representation of the shape of a distribution.The standard estimate of the skewness 
oeÆ
ient � from observations z1; : : : ; zn is�̂ = �̂3s3 where �̂3 = 1n� 3 + 2=n nXi=1(zi � �z)3: (1.10)Here �̂3 is the natural estimate of the third order moment2 and s the sample standard devia-tion. The estimate is for low n and heavy-tailed distributions typi
ally severely biased downwards.Under-estimation of skewness, and by impli
ation the risk of large losses, is a re
urrent theme with
laim size modelling in general and is 
ommon even when parametri
 families are used. Several ofthe exer
ises are devoted to the issue.Non-parametri
 estimationThe random variable Ẑ that atta
hes probabilities 1=n to all 
laims zi of the past is a possible modelfor future 
laims. Its de�nition in (1.1) as a dis
rete set of probabilities may seem at odds with theunderlying distribution being 
ontinuous, but experien
e in statisti
s (see Efron and Tibshriani,1994) suggests that this matters little. As with other distributions there are an expe
tation, astandard deviation, a skewness 
oeÆ
ient and also per
entiles. All those are 
losely related to theordinary sample versions. For example, the mean and standard deviation of Ẑ are by de�nitionE(Ẑ) = nXi=1 1nzi = �z; and sd(Ẑ) =  nXi=1 1n(zi � �z)2!1=2 := s: (1.11)Upper per
entiles are (approximately) the histori
al 
laims in des
ending order; i.e.q̂" = z("n) where z(1) � : : : � z(n):The skewness 
oeÆ
ient is also similar; see Exer
ise 9.2.8.The empiri
al distribution fun
tion 
an only be visualized as dot plot where the observationsz1; : : : ; zn are re
orded on a straight line to make their tightness indi
ate the underlying distribu-tion. If you want a density fun
tion, turn to the kernel estimate in Se
tion 2.2, whi
h is related toẐ in the following way. Let " be a random variable with mean 0 and standard deviation 1, andde�ne Ẑh = Ẑ + hs"; where h � 0: (1.12)2Division on n� 3 + 2=n makes it unbiased. 4



The distribution of Ẑh 
oin
ides with the estimate (??); see Exer
ise 9.2.9. Note thatvar(Ẑh) = s2 + (hs)2 so that sd(Ẑh) = sp1 + h2;a slight in
ation in un
ertainty over that found in the histori
al data. With the usual 
hoi
es of hthat 
an be ignored. Sampling is still easy (Exer
ise 9.2.10), but usually there is not mu
h pointin using a positive h for other things than visualization.In �nan
e the empiri
al distribution fun
tion is often 
alled histori
al simulation. It is ultra-rapidto set up and to simulate (use Algorithm 4.1), and there is no worry as to whether a parametri
family �ts or not. On the other hand, no simulated 
laim 
an be larger than what has been seenobserved in the past. How serious that drawba
k is depends on the situation. It may not mattertoo mu
h when there is extensive experien
e to build on. In the big 
onsumer bran
hes of motorand housing we have presumably seen mu
h of the worst. The empiri
al distribution fun
tion 
analso be used with big 
laims when the responsibility per event is strongly limited, but if it is not,the method 
an go seriously astray and under-estimate risk substantially. Even then is it possibleto 
ombine the method with spe
i�
 te
hniques for tail estimation as in Se
tion 9.5.1.3 The Log-normal and Gamma families of distributionsIntrodu
tionTwo of the most frequently applied des
riptions of 
laim size un
ertainty are the log-normal andGamma models. Both are of the form Z = �Z0 where � is expe
tation. The standard log-normalZ0 
an be de�ned through its sto
hasti
 representationZ0 = exp(�12�2 + �") where " � N(0; 1) (1.13)whereas we for the standard Gamma must be use its density fun
tionf0(z) = ���(�)z��1 exp(��z); z > 0; (1.14)see (??). This se
tion is devoted to a brief exposition of the main properties of these models.The log-normal: A qui
k summaryLog-normal density fun
tions were plotted in Figure 2.4. Their shape depended heavily on � andhad a highly skewed form when � was not too 
lose zero; see also Figure 9.2 below. Mean, standarddeviation and skewness areE(Z) = �; sd(Z) = �fexp(�2)� 1g1=2; skew(Z) = exp(3�2)� 3 exp(�2) + 2(exp(�2)� 1)3=2 ;see Se
tion 2.3. The expession for the skewness 
oeÆ
ient is derived in Exer
ise 9.3.5.Parameter estimation is usually 
arried out by noting thatY = log(Z) = log(�)� 12�2 + � ";mean sd 5
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Figure 9.1 Left: Q-Q plot of standard Gamma per
entiles against the normal. Right: StandardGxamma density fun
tions.an immediate 
onsequen
e of the de�nition above. A log-normal sample z1; : : : ; zn is then trans-formed to a Gaussian one y1 = log(z1); : : : ; yn = log(zn), and the sample mean and varian
e �y andsy of the latter produ
e estimates of � and � throughlog(�̂)� 12 �̂2 = �y; �̂ = sy whi
h yields �̂ = exp(12s2y + �y); �̂ = sy:The log-normal distribution is used everywhere in this book.Properties of the Gamma modelGood operational qualities and 
exible shape makes the Gamma model useful in many 
ontexts.Mean, standard deviation and skewness areE(Z) = �; sd(Z) = �=p� and skew(Z) = 2=p�; (1.15)and the model possesses a so-
alled 
onvolution property. Let Z01; : : : ; Z0n be an independentsample from Gamma(�). Then�Z0 � Gamma (n�) where �Z0 = (Z01 + : : :+ Z0n)=n;see Appendix A. In other words, the average is another standard Gamma variable, the shape nowbeing n�. By the 
entral limit theorem �Z0 also tends to the normal as n ! 1, and this provesthat Gamma variables be
ome normal as � !1. This is visible in Figure 9.1 left where Gammaper
entiles are Q-Q plotted aganst normal ones. The line is mu
h straightened out as � = 10 isrepla
ed by � = 100. A similar tenden
y is seen among the density fun
tions in Figure 9.1 rightwhere two of the shapes were used with sto
hasti
 intensies in Se
tion 8.5. More general versionsof the 
onvolution property are given among the exer
ises.6



Fitting the Gamma familiyThe method of moments (Se
tion 7.3) is the simplest way to determine Gamma parameters � and� from a set of histori
al data z1; : : : ; zn. If the theoreti
al expressions are mat
hed sample meanand standard deviation �z and s, we obtain�z = �̂; s = �̂=p� with solution �̂ = �z; �̂ = (�z=s)2:Likelihood estimation is slightly more a

urate, and is available in 
ommer
ial software, but it isnot diÆ
ult to implement on your own. The logarithm of the density fun
tion of the standardGamma islogff0(z)g = � log(�) � logf�(�)g + (�� 1) log(z)� �zwhi
h 
an be inserted into (1.5). After some simple manipulations this yields the log likelihoodfun
tionL(�; �) = n� log(�=�) � n log �(�) + (�� 1) nXj=1 log(zj)� �� nXj=1 zj : (1.16)Note that�L�� = �n�� + ��2 nXi=1 zi; zero when � = (z1 + : : :+ zn)=n = �z:It follows that �̂ = �z is the likelihood estimate and L(�z; �) 
an be tra
ked under variation of � forthe maximizing value �̂; see also the bise
tion method in Appendix B.Regression for 
laims sizeSometimes you may want to examine whether 
laim size tend to be systemati
ally higher with
ertain 
ustomers than with others. To the author's experien
e the issue is not so important as itwas with 
laim frequen
y, but we should know how it's done. Basis are histori
al data similar tothose in Se
tion 8.4, now of the formz1 x11 � � � x1vz2 x21 � � � x2v� � � � � �� � � � � �zn xn1 � � � xnv;losses 
ovariatesand the question is how we use them to understand how a future, reported loss Z are 
onne
ted toexplanatory variables x1; : : : ; xv . The standard approa
h is throughZ = �Z0 where log(�) = b0 + b1x1 + : : :+ bvxv;and E(Z0) = 1. As the explanatory variables 
u
tuate, so does the mean loss �.Frequently applied models for Z0 are log-normal and Gamma. The former simply boils downto ordinary linear regression. The logarithm of the 
laim in then used as as dependent variable andthe explanatory variables �tted through ordinary least squares. Gamma regression is available in
ommer
ial software and implemented as likelihood �tting through an extension of (1.16). For anexample, see Se
tion 10.3. 7



1.4 The Pareto family and extremesIntrodu
tionThe Pareto distributions, introdu
ed in Se
tion 2.6, are among the most heavy-tailed of all modelsin pra
ti
al use and potentially a 
onservative 
hoi
e when evaluating risk in property insuran
e.Density and distribution fun
tions aref(z) = �=�(1 + z=�)1+� and F (z) = 1� 1(1 + z=�)� ; z > 0:Simulation was easy (Algorithm 2.8), and the model was used for illustration in several of theearlier 
hapters. But Pareto distributions also play a spe
ial role in the mathemati
al des
riptionof the extreme right tail. There are, perhaps surprisingly, general results in that dire
tion. Thatis the main topi
 of this se
tion. How Pareto models were �tted histori
al data was explained inSe
tion 7.3; 
ensoring is added below.PropertiesPareto models are so-heavy-tailed that even the mean may fail to exist (that's why another param-eter � represents s
ale). Formulae for expe
tation, standard deviation and skewness are� = E(Z) = ��� 1 ; sd(Z) = � � ��� 2�1=2 ; skew(Z) = 2� ��� 2�1=2 �+ 1�� 3 ; (1.17)valid for � > 1, � > 2 and � > 3 respe
tively. It is to the author's experien
e rare in pra
ti
e thatthe mean doesn't exist, but in�nite varian
es with values of � between 1 and 2 are not unfrequent.The exponential distribution appears in the limit when the ratio � = �=(�� 1) is kept �xed and �raised to in�nity; see Se
tion 2.6. This result is of some importan
e for the extreme value theory
ited below. In this sense the Pareto and the Gamma families interse
t. The exponential distribu-tion is a heavy-tailed Gamma and the most light-tailed Pareto.One of the most important properties of the Pareto family is its behaviour at the extreme righttail. The issue is de�ned by the over-threshold model whi
h is the distribution of Zb = Z � bgiven Z > b. Its density fun
tion (derived in Se
tion 6.2) isfb(z) = f(b+ z)1� F (b) ;see (??). It be
omes parti
ularly simple with Pareto models. Inserting the expressions for f(z)and F (z) yieldsfb(z) = (1 + b=�)��=�(1 + (z + b)=�)1+� = �=(� + b)f1 + z=(� + b)g1+�Pareto density fun
tionafter some simple manipulations. This is again a Pareto density. The shape � is the same as before,whereas the parameter of s
ale has be
ome �b = � + b. In other words, over-threshold models forPareto variables remain Pareto with shape unaltered. The mean (if it exists) is known as themeanex
ess fun
tion, and be
omesE(ZbjZ > b) = �b�� 1 = � + b�� 1 = � + b�� 1 (requires � > 1): (1.18)8



It is larger than the original � and in
reases linearly with b.Over-threshold modelling in generalThe tail property of Pareto models has a general extension. When b be
omes in�nite, only thisfamily 
an appear no matter (almost) what the distribution of Z was in the beginning! The main
ondition is that the distribution of Z has no upper limit (it must also be 
ontinuous). There iseven a theory when Z is bounded by some given maximum, but su
h models are rarely naturalto employ. For that extension see Embre
ts, Kl�uppelberg and Mikos
h (1997) whi
h also detail
ertain weak regularity 
onditions that must be satis�ed. The result (whi
h will not be proved)goes ba
k at least to Pi
kands (1975).For the pre
ise formulation let P (zj�; �) be the distribution fun
tion of Pareto(�; �) and de�neFb(z) = Pr(Zb � zjZ > b) = Pr(Z � b+ zjZ > b)as the over threshold distribution fun
tion of an arbitrary random variable Z satisfying the 
on-ditions above. The somewhat 
ompli
ated statement is that there exists a positive parameter �(possibly in�nite) su
h we 
an for all thresholds b �nd parameters �b that makesmaxz�0 jFb(z)� P (zj�; �b)j ! 0; as b!1:This tells us that dis
repan
ies between the two distribution fun
tions vanish as the thresholdgrows. At the end they are equal, and the over-threshold distribution has be
ome a member of thePareto family. We saw above that the result is exa
t and applies for �nite b (with �b = �+ b) whenthe original model is Pareto itself.Whether we get a Pareto proper (with �nite �) or an exponential (in�nite �) depends on theright tail of the distribution fun
tion F (z). The determining fa
tor is how fast 1 � F (z) ! 0 asz !1. A de
ay of order 1=z� yields Pareto (with shape �). A simple example of su
h polynomialde
ay is the Burr distribution of Exer
ise 2.5.4 for whi
h the distribution fun
tion isF (z) = 1� f1 + (z=�)�1g��2 or for z large 1� F (z) := f(z=�)�1g��2 = z��1�2 ;and � = �1�2. Many distributions used in pra
ti
e have lighter tails. The Gamma and the log-normal are but two examples of distributions d
eaying faster than any polynomial �. Now thelimiting over-threshold model is the exponential. Illustrations are provided in Exer
ises 9.4.3-6.The Hill estimateThe de
ay rate � 
an be determined from histori
al data (though they have to be plenty). Apopular method is the Hill estimate�̂�1 = 1n� n1 nXi=n1+1 log z(i)z(n1)! (1.19)where z(1) � : : : � z(n) are the data sorted in as
ending order and n1 is user sele
ted. Ideally n1=nshould be 
lose to one and n�n1 large whi
h requires n huge. The Hill estimate is used for generaldistributions, but (as we saw above) � is also the shape of an approximating Pareto model. There9



is a link here that 
an be used to derive the estimate.Suppose �rst that z1; : : : ; zn 
ome from a pure Pareto distribution with known s
ale parameter�. The likelihood estimate of � was derived in Se
tion 7.3 as�̂�1� = 1n nXi=1 log(1 + zi� );see also below. We may apply this result to observations ex
eeding some large threshold b, say toz(n1+1)� b; : : : ; z(n)� b. For large enough b this sample is approximate Pareto with s
ale parameterb+ �. It follows that the likelihood estimate be
omes�̂�1� = 1n� n1 nXi=n1+1 log�1 + z(i) � bb+ � � = 1n� n1 nXi=n1+1 log�z(i) + �b+ � � :But we are assuming that b (and by 
onsequen
e all z(i)) is mu
h larger than �. Hen
elog�z(i) + �b+ � � := log�z(i)b � = log z(i)z(n1)! if b = z(n1);
oin
ides (almost) with �̂ in (1.19). A number of justi�
ations of the Hill estimate 
an be foundin Chapter 6 of Embre
ts, Kl�uppelberg and Mikos
h (1997). It is 
onsistent and 
onverges to thetrue value as n!1 and n1=n! 1.The method is tested among the exer
ises. It does provide the shape of the over-threshold dis-tribution, but there is a s
ale parameter �b too, and we 
an't use the Pareto model to assessun
ertainty without it. A simple estimate is�̂b = z(n2) � z(n1)21=�̂ � 1 where n2 = 1 + n1 + n2 ; (1.20)whi
h utilizes that �(21=� � 1) is the median under Pareto(�; �) whereas the over-theshold dataz(n1+1) � z(n1); : : : ; z(n) � z(n1) have median z(n2) � z(n1):A possible estimate is therefore �̂b(21=�̂ � 1) = z(n2) � z(n1) whi
h is (1.20).Likelihood methodsAn alternative way of determining the over-threshold distribution is to apply Pareto likelihoodestimation to observations ex
eeding it. Te
hni
ally it is a little more work than through the Hillestimate; see Se
tion 7.3 for details.The Pareto model is also a good example with whi
h to show how 
ensored information is utilized.Observations are now in two groups, either the ordinary, fully observed 
laims z1; : : : ; zn or those(nr of them) known to have ex
eeded 
ertain thresholds b1; : : : ; bnr , but not by how mu
h. The loglikelihood fun
tion for the �rst group is as in Se
tion 7.3; i.e.n log(�=�) � (1 + �) nXi=1 log(1 + zi� ); 10



whereas for the the 
ensored part we must add 
ontributions from knowing that Pr(Zi > bi). Theprobability of this happening isPr(Zi > bi) = 1(1 + bi=�)� or logfPr(Zi > bi)g = �� log(1 + bi� );and when all those are taken into a

ount, we obtain the full log likelihoodL(�; �) = n log(�=�) � (1 + �) nXi=1 log(1 + zi� ) � � nrXi=1 log(1 + bi� ):
omplete information Censoring to the rightwhi
h is to be maximized, a numeri
al problem very mu
h the same as in Se
tion 7.31.5 Large 
laim situationsIntrodu
tionThe big 
laims play a spe
ial role be
ause of their importan
e �nan
ially. It is also hard to assesstheir distribution. They (lu
kily!) do not o

ur very often, and histori
al experien
e is thereforelimited. Indeed, insuran
e 
ompanies may give 
over to 
laims larger than have been seen earlier.What should our approa
h be in these situations? The simplest would be to �t a parametri
 fam-ily and extrapolate beyond past experien
e, but that may not be a very good idea. A Gammadistribution may �t well in the 
entral regions without being reliable at all at the extreme righttail. Indeed, su
h a pro
edure may easily underestimate big 
laims risk severely; see Se
tion 9.6. APareto model would be more 
onservative, and then there is the result due to Pi
kands that pointsto this distribution as a general des
ription above all large thresholds. There is an idea here, andthe purpose of the present se
tion is to develope it.An approa
h through mixturesHistori
al 
laims look s
hemati
ally like the following:Ordinary size LargeClaims: z(1); : : : ; z(n1) b z(n1+1); : : : ; z(n)rrr r r rrrrrr r r r rrr rThere are many values in the small and medium range to the left of the verti
al bar and justa few (or none!) large ones to the right of it. What is a
tually meant by `large' is not 
lear-
ut,but let us say that we have sele
ted a threshold b de�ning `large' 
laims as those ex
eeding it. Theoriginal 
laims z1; : : : ; zn have been ranked in as
ending order asz(1) � z(2) : : : � z(n)so that observations from z(n1) and smaller are below the threshold and those from z(n1+1) andlarger are above. How the threshold b is 
hosen in pra
ti
e is dis
ussed below; see also the numer-i
al illustrations in Se
tion 9.6. 11



A strategy is to divide modelling into separate parts de�ned by the threshold. A random vari-able (or 
laim) Z may always be writtenZ = (1� Ib)Z�b + IbZ>b (1.21)where Z�b = ZjZ � b; Z>b = ZjZ > b
entral region extreme right tail and Ib = 0 if Z � b= 1 if Z > b: (1.22)The random variable Z�b is Z 
on�ned to the region to the left of b, and Z>b is similar to the right.It is easy to 
he
k that two sides of (1.21) are equal, but at �rst sight this merely looks 
ompli
ated.Why on earth 
an it help us? The point is that we have 
reated a framework rea
hing out to twodi�erent sour
es of information. To the left of the threshold there is the histori
al data with whi
hwe may identify a model. On the right the result due to Pi
kands suggests a Pareto distribution.This de�nes a modelling strategy whi
h will now be developped.The empiri
al distribution mixed with ParetoThe pre
eding argument lead to a two-
omponent approa
h whi
h 
an be implemented in manyways. For example, to the left of b we 
ould �t a parametri
 model. It would extend beyond b, butthat may not matter too mu
h; see Exer
ise ??. Another idea is to use non-parametri
 modelling,and this is the method that will be developed in detail with the threshold sele
ted as one of theobservations. Choose some small probability p and let n1 = n(1� p) and b = z(n1) . Then takeZ�b = Ẑ and Z>b = z(n1) + Pareto(�; �); (1.23)where Ẑ follows the empiri
al distribution fun
tion over z(1); : : : ; z(n1); i.e.Pr(Ẑ = z(i)) = 1n1 ; i = 1; : : : ; n1: (1.24)The remaining part (the deli
ate one!) are the parameters are � and � and the 
hoi
e of p. Plentyof histori
al data would deal with everything. Under su
h 
ir
umstan
es p 
an be determined lowenough (and hen
e b high enough) for the Pareto approximation to be a good one, and histori
aldata to the right of b provides estimates �̂ and �̂. There are even sophisti
ated, automated te
h-niques for the sele
tion of p, see ? and ?. In pra
ti
e you might do just as well with trial and error.An example of this kind is dis
ussed in the next se
tion.With more limited experien
e (as is 
ommon) is is hard to avoid a subje
tive element. One ofthe advantages of dividing modelling into two 
omponents is that it 
lari�es the domain wherepersonal judgment enters. If you take the view that a degree of 
onservatism is in order when thereis insuÆ
ient information for a

ura
y, that 
an be a
hieved by pla
ing b low and using Paretomodelling to the right of it. Numeri
al experiments that supports su
h a strategy are 
arried outin the next se
tion. Mu
h material on modelling extremes 
an be found in Embre
ts, Kl�uppelbergand Mikos
h (1997).Sampling mixture models 12



As usual a sampling algorithm is also a summary of how the model is 
onstru
ted. With the em-piri
al distribution used for the 
entral region it runs as follows:Algorithm 9.2 Claims by mixtures0 Input: Sorted 
laims z(1) � : : : � z(n), p, n1 = n(1� p), � and �.1 Draw uniforms U�1 , U�22 If U�1 > p then3 i�  1 + [n1U�2 ℄ and Z�  z(i�) %The empiri
al distribution, Algorithm 4.1else4 Z�  b+ �f(U�2 )�1=� � 1g %Pareto, Algorithm 2.85 Return Z�The algorithm operates by testing whether the 
laim 
omes from the 
entral part of the distri-bution or from the extreme, right tail over b. Other distributions 
ould have been used on Line 3.The present version is extremely qui
k to implement.1.6 Sear
hing for the modelIntrodu
tionA �nal model for 
laim size is the result of di�erent deliberations. Histori
al data have typi
ally beenutilized through a non-parametri
 approa
h or with parametri
 families. We may also have 
hangedthe variable. The idea is then that standard families of distributions may �t a transformed vari-able better than the original one, and with re-transformation afterwards the model again applies toordinary 
laims. One of our worries should be model error. Does the distribution sele
ted re
e
tthe un
ertainty of real life? If there are small amounts of data to go on, the dis
repan
y 
ouldbe huge. Should that lean us towards 
on
ervative 
hoi
es? If a

urate mathemati
al des
riptionsare beyond rea
h anyway, it 
ould be an argument in favour of heavy-tailed distributions like Pareto.The purpose of this se
tion is to indi
ate how these themes enter by means of two very di�er-ent examples. We have already met the Norwegian fund for natural disasters in 
hapter 7 wherethere were just n = 21 histori
al in
idents to rely on. By 
ontrast the so-
alled Danish �re 
laimswill serve our needs for a `large' data set. Many authors on a
tuarial s
ien
e have used it as atest 
ase; see Embre
hts, Kl�uppelberg and Mikos
h(1997) where more on their orgin is given. Thehistori
al re
ord 
omprises n = 2167 industrial �res. Damages start at one million Danish kroner(DKK)3 with 263 as a maximum and with average �z = 3:39, standard deviation s = 8:51 andskewness 
oeÆ
ient 
 = 18:7. The latter indi
ates very heavy tails and strong skewness towardsthe right. This also emerges 
learly from the plots in Figure 9.2 and 9.3 below.Working with transformationsA useful tool for modelling is to 
hange data by means of a transformation, say H(z). The situationis then as follows:z1; : : : ; zn y1 = H(z1); : : : ; yn = H(zn):original data new data3There are about eight Danish kroner in one euro.13
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Figure 9.2 The log-normal model �tted the Danish �re data on log-s
ale. Density fun
tion withkernel density estimate (left) and Q-Q plot (right).Modelling is then atta
ked through y1; : : : ; yn and Y = H(Z) instead of the original Z. The ideais to make one of the simple models �t better than 
ould be a
hieved with Z itself. At the end were-transform ba
k through Z = H�1(Y ) with Z� = H�1(Y �) for the Monte Carlo. The log-normalis a familiar example. Then H(z) = log(z) and H�1(y) = exp(y) with Y normal. The logarithm isthe most 
ommonly used transformation of all. Frequently applied alternatives are powers Y = Z�where � 6= 0 is a some given index; see also Exer
ise 9.6.2. The 
hoi
e of transformations (typi
allymade by trial and error) is a se
ond feature that adds 
exibility to the usual families of distributions.Variations on this theme are indeed many. With logaritms we might takeY = log(1 + Z) Y = log(Z);Y positive Y over the entire real lineand entirely di�erent families of distributions would be used for Y . As an example 
onsider theDanish �re 
laims where we must take into a

ount that they run from 1 and upwards (in milllionDKK). That makes Y = log(Z) positive, and one possibility 
ould be the log-normal throughZ = eY ; Y = �ye��2=2+�" with estimates �̂y = 1:19; �̂ = 1:36:Here " is N(0; 1). An alternative is the Gamma familiy. Let Y0� be Gamma distributed with meanone and shape � and 
onsiderZ = eY ; Y = �yY0� with estimates �̂y = 0:79; �̂ = 1:16:Both pairs of estimates are likelihood ones.What is immediately 
lear from the huge dis
repan
y in the estimated means �y is that bothmodels 
an't �t. Indeed, the log-normal doesn't work. Its estimated density fun
tion (Figure 9.214
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Figure 9.3. The Gamma model �tted the Danish �re data on log-s
ale. Density fun
tion withkernel density estimate (left) and Q-Q plot (right).left, horizontal axis on logarithmi
 s
ale) mat
hes the kernel density estimate poorly, but (as usual)Q-Q plotting (Figure 9.2 right) provides a better view. The right tail of the log-normal is too heavyand exaggerates the risk of extreme 
laims grossly4. By 
ontrast the Gamma �t as displayed inFigure 9.3 is mu
h better. Perhaps the extreme right tail is slightly too light, but the �t isn't anend in itself, and 
onsequen
es for the evaluation of the reserve is not ne
essarily serious. That willbe examined in Se
tion 10.3; see also Exer
ise 9.6.2 where a slight modi�
ation will improve the�t.Pareto and Pareto mixingThe Pareto model is so heavy-tailed on its own that it 
ould be tried on the raw Danish �re data di-re
tly (without log-transform). It is also a strong 
andidate for the extreme right tail (Se
tion 9.4).Indeed, with su
h an extensive data re
ord it is tempting to forget all about parametri
 families anduse the strategy advo
ated in Se
tion 9.5 using the empiri
al distribution fun
tion for the 
entralpart and Pareto on the right. Table 9.2 shows the results of �tting Pareto distributions (throughmaximum likelihood) over various thresholds b. As b is being raised, the situation should be
omemore and more Pareto-like (Pi
kand's theorem). Under a stri
t Pareto regime, the shape parameter� is the same for all b whereas the s
ale parameter depends on b through �b = b� 1 + �=(� � 1);see Exer
ise ?. Stret
hing the imagination a bit there are reminis
en
es of this in Table 9.1 where� is more stable than �; see Exer
ise 9.4.1 for detailed 
al
ulations.But it would be a gross exaggeration to pro
laim the data to be Pareto distributed. Q-Q plots fortwo of the over threshold distributions is shown in Figure 9.4. There is a reasonable �t on the right(above 5%), but not on the left (above 50%) where the Pareto distribution �tted has heavier tails4Note that the 167 largest observations have been left out to make the resolution in other parts of theplot better 15
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Figure 9.4 Q-Q plots of �tted Pareto distributions against the empiri
al distribution fun
tion, 50%largest observations (left) and 5% largest (right).that the empiri
al 
ounterpart. Table 9.1 tell us why. The two shape parameters estimated (1:42and 2:05) deliver quite unequal extreme un
ertainty.Tiny histori
al re
ordsHow should we 
onfront a situation like the one in Table 7.1 (the Norwegian natural disasters)where there were no more than n = 21 
laims in total, and where the phenomenon itself surely isheavy-tailed with potential losses mu
h larger than those on re
ord? The underlying distribution
an't be determined with mu
h a

ura
y, yet somehow a model must be found. One possibility isgeophysi
al modelling. Natural disasters are then simulated in the 
omputer and their 
ost 
ountedfrom detailed, physi
al des
riptions of houses and installations. Evaluations of this kind are 
arriedout around the world, but they are outside out natural range of topi
s, and we shall 
on
entrateon what 
an be extra
ted from histori
al losses.If you �t the Gamma and Pareto family to the natural disasers by maximum likelihood, the resultslook like this:Unit: Million DKK Part of data �ttedAll 50% largest 10% largest 5% largestThreshold (b) 1.00 1.77 5.56 10.01Shape (�) 1.64 1.42 1.71 2.05S
ale (�) 1.52 1.82 7.75 14.62Table 9.1 Pareto parameters for the over threshold distribution of the �re 
laims.16



Shapes in true models: 1.71 in Pareto, 0.72 in Gamma. 1000 repetitions.True Histori
al re
ord: n = 21 Histori
al re
ord: n = 80model Models found Models foundPareto Gamma log-normal Pareto Gamma log-normalPareto .49 .29 .22 .72 .12 .16Gamma .44 .51 .05 .34 .66 0Table 9.2 Probabilites of sele
ting given models (Bold fa
e: Corre
t sele
tion).Shape Mean 5% 1% Shape Mean 5% 1%0.72 179 603 978 1.71 200 658 1928Gamma family Pareto familyThese are very di�erent families of distributions, yet their dis
repan
ies, though 
onsiderable, arenot enormous in the 
entral region (say up to the upper 5% per
entile). For the very large 
laimsthat 
hanges, and the Pareto 1% per
entile is twi
e that of the Gamma. There is a lesson here.Many families �t reasonably well up to some moderate threshold. That makes modelling easierwhen there are strong limits on responsibilities. If it isn't, the 
hoi
e between parametri
 familiesbe
omes a more deli
ate one.The right family: Impossible?In
identally, how impossible is it to determine the family from small amounts of data? Suppose aQ-Q plot is used. A given family su
h as Gamma or Pareto is then evaluated by 
omparing theirestimated per
entiles q̂i to empiri
al ones z(i) where the former 
orrespond to distributions �ttedthe data. What is a
tually done when the two sequen
es are mat
hed, is un
lear (di�erent waysfor di�erent people), but perhaps some try to minimizeQ = nXi=1 jq̂i � z(i)j: (1.25)This 
riterion has been proposed as basis for formal goodness of �t tests in Devroye (1971). It
ould be that humans do it a little better, but results using other 
ritera didn't deviate that mu
hfrom those in Table 9.2.Monte Carlo experiments were run with m = 1000 repli
ations a

ording to the following s
heme:True model Parametri
 family triedPareto �tting q̂�1 � : : : � q̂�nor �! z�1 ; : : : ;� z�n �! �! Q� =Pi jz�(i) � q̂�i j:Gamma histori
al data sorting z�(1) � : : : z�(n)Simulated histori
al data were drawn from the Pareto or Gamma model on the left and the model(possibly a di�erent one!) �tted. That gave estimated per
entiles q̂�i whi
h 
ould be 
omparedto purely empiri
al ones z�(i) and a value of the 
riterion Q� 
omputed for the parametri
 modeltried. When Pareto, Gamma and log-normal were �tted to the same histori
al data, we obtainthree di�erent evaluations Q�, and the distribution 
orresponding to the smallest, best-�tting onewas pi
ked. The sele
tion statisti
s is shown in Table 9.2. It is 
learly impossible to 
hoose betweenthe three models when there are only n = 21 
laims. The 
han
e is improved with n = 80 and with17



m = 1000 repli
ationsTrue model: Pareto, shape = 1:71 True model: Gamma, shape = 0:72Re
ord: n=21 Re
ord: n=80 Re
ord: n=21 Re
ord: n=80Per
entiles (%) 25 75 90 25 75 90 25 75 90 25 75 90Fitted Pareto 0.4 1.5 2.9 0.7 1.3 1.7 0.8 1.4 2.2 0.9 1.3 1.6Fitted Gamma 0.3 0.6 1.0 0.4 0.7 0.9 0.8 1.1 1.3 0.9 1.1 1.2Model sele
ted 0.4 1.2 2.3 0.6 1.2 1.6 0.8 1.2 1.5 0.9 1.1 1.3Table 9.3 The distribution (as 25 70 and 90 per
entiles) of �̂ = q̂0:01=q0:01 where q̂0:01is �tted and q0:01 true 1% per
entiles of 
laims. Bold fa
e: Corre
t parametri
 family used.n = 400 (not shown) the su

ess probability was about 0:90 � 0:95.Data in short supply: What then?The pre
eding experiment showed the futility of trying to identify models from small amounts ofhistori
al data, but when fa
ed with su
h situations, how should they be atta
ked? Here are sometentative suggestions. A good deal hinges on the maximum responsibility b per 
laim. If it issmaller than the largest observation z(1), it 
ould be a 
ase for the empiri
al distribution fun
tion.That doesn't help us mu
h with the Norwegian natural disasters from Se
tion 7.4 where b is mu
hlarger than z(1), and risk would be grossly under-estimated by that method. Surely the Paretodistribution is one of the leading 
ontenders now. It is a 
onservative 
hoi
e (whi
h seems sensible),possibly estimation errors undermine some of that 
aution.These points are illustrated by the experiment in Table 9.3 where the issue is the 
onsequen
esof being wrong. For example, if the underlying distribution is a member of the Gamma family,how does a Pareto �t perform? Or what about estimated Gamma per
entiles when the true modelis Pareto? Clauses of maximum payments have mu
h bearing on this (as mentioned), but theseproblems 
an also be inspe
ted through�̂ = q̂"q" for " = 1%:Patterns in how �̂ deviate from 1 reveal the impa
t of model and estimation error jointly. Sup-pose the Gamma family is �tted to 
laims that are a
tually Pareto distributed. It then emergesfrom Table 9.3 (Line two from bottom) that the 90% per
entile of �̂ is at most one; i.e. q0:01 isalmost 
ertain to be under-estimated! The tenden
y is reversed when the Pareto model is appliedto Gamma-distributed losses. Now the per
entile is over-estimated. Certainly, we are doing some-thing silly, and yet in pra
ti
e we might not know. The method that 
omes on top in Table 3 is thelast one where the per
entiles are 
omputed form the best-�tting of both the Gamma and Paretodistributions, i.e. the alternative minimizing (1.25) has been pi
ked. Now the the distribution of �̂varies around one, though with huge errors.In summary it seems sensible to try determine the family empiri
ally even for small data sets(though we often guess wrong). If we go for 
onservatism and 
aution, the Pareto model may bethe answer despite the huge un
ertainty of the �tted parameters.18



1.7 Further reading1.8 Exer
isesSe
tion 9.2Exer
ise 9.2.1 The 
ost of settling a 
laim 
hanges from Z to Z(1 + I) if I is the rate of in
ation betweentwo time points. a) Suppose 
laim size Z is Gamma(�; �) in terms of the old pri
e system. What are theparameters under the new, in
ated pri
e? b) The same same question when the old pri
e is Pareto(�; �). 
)Again the same question when Z is log-normally distributed. d) What is the general rule for in
orporatingin
ation into a parametri
 model of the form (1.4)?Exer
ise 9.2.2 This is a follow-up of the pre
eding exer
ise. Let z1; : : : ; zn be histori
al data 
olle
tedover a time span in
uen
ed by in
ation. We must then asso
iate ea
h 
laim zi with a pri
e level Qi = 1+ Iiwhere Ii is the rate of in
ation. Suppose the 
laims have been ordered so that z1 is the �rst (for whi
hI1 = 0) and zn the most re
ent. a) Modify the data so that a model that 
an be �tted from them. b) Ensurethat the model applies to the time of the most re
ent 
laim. Imagine that all in
ation rates I1; : : : ; In 
anbe read o� from some relevant index.Exer
ise 9.2.3 Consider nl observations 
ensored to the left. This means that ea
h Zi is some bi orsmaller (by how mu
h isn't known). With F0(z=�) as the distribution fun
tion de�ne a 
ontribution to thelikelihood similar to right 
ensoring in (1.6).Exer
ise 9.2.4 Families of distribution with unknown lower limits b 
an be de�ned by taking Y = b + Zwhere Z starts at the orgin. Let Yi = b+ Zi be an independent sample (i = 1; : : : :n) and de�neMy = min(Y1; : : : ; Yn) and Mz = min(Z1; : : : ; Zn):a) Show that E(My) = b+E(Mz). b) Also show thatPr(Mz > z) = f1� F (z)gn so that E(Mz) = Z 10 f1� F (z)gn dz;where F (z) is the distribution fun
tion of Z [Hint: Use Exer
ise ??? for the expe
tation.℄. 
) With F (z) =F0(z=�) dedu
e thatE(My) = b+ Z 10 f1� F0(z=�)gn dz = b+ � Z 10 f1� F0(z)gn dzand explain how this justi�es the bias 
orre
tion (1.8) when b̂ =My is used as estimate for b.Exer
ise 9.2.5 We shall in this exeri
ise 
onsider simulated, log-normal histori
al data, estimate skew-ness through the ordinary estimate (1.10) and examine how it works when the answer is known (look it upin Exer
ise 9.3.5 below). a) Generate n = 30 log-normal 
laims using � = 0 and � = 1 and 
ompute theskewness 
oeÆ
ient (1.10). b) Redo four times and remark on the pattern when you 
ompare with the truevalue. 
) Redo a),b) when � = 0:1. What about the patterns now? d) Redo a) and b) for n = 1000. Whathas happened?Exer
ise 9.2.6 Consider the pure empiri
al model Ẑ de�ned in (1.1). Show that third order momentand skewness be
ome�3(Ẑ) = 1n nXi=1(zi � �z)3 so that skew(Ẑ) = n�1Pni=1(zi � �z)3s3 ;where �z and s are sample mean and standard deviation.19



Exer
ise 9.2.7 Consider as in (1.12) Zh = Ẑ + hs" where " � N(0; 1), s the sample standard devia-tion and h > 0 is �xed. a) Show thatPr(Zh � zjẐ = zi) = ��z � zihs � (�(z) the normal integral):b) Use this to dedu
e thatPr(Zh � z) = 1n nXi=1 ��z � zihs � :
) Di�erentiate to obtain the density fun
tion of Zh and show that it 
orresponds to the kernel densityestimate (??) in Se
tion 2.2.Exer
ise 9.2.8 Show that a Monte Carlo simulation of Zh 
an be generated from two uniform variables U�1and U�2 throughi�  [1 + nU�1 ℄ followed by Z�h  zi� + hs��1(U�2 )where ��1(u) is the per
entile fun
tion of the standard normal. [Hint: Look up Algorithms 2.3 and 4.1℄.Se
tion 9.3Exer
ise 9.3.1 The 
onvolution property of the Gamma distribution is often formulated in terms of anindependent Gamma sample of the form Z1 = �Z01; : : : ; Zn = �Z0n where Z01; : : : ; Z0n are distributed asGamma(�). a) Verify that S = Z1 + : : :+ Zn = (n�) �Z0 where �Z0 = (Z01 + : : :+ Z0n)=n. b) Use the resulton �Z0 
ited in Se
tion 9.3 to dedu
e that S is Gamma distributed too. What are its parameters?Exer
ise 9.3.2 The data below, taken from Beirlant, Teugels and Vyn
kier (1996) were originally 
om-piled by The Ameri
an Insuran
e Asso
iation and show losses due to single hurri
anes in the US over theperiod from 1949 to 1980 (in money unit million US$).6.766 7.123 10.562 14.474 15.351 16.983 18.383 19.030 25.30429.112 30.146 33.727 40.596 41.409 47.905 49.397 52.600 59.91763.123 77.809 102.942 103.217 123.680 140.136 192.013 198.446 227.338329.511 361.200 421.680 513.586 545.778 750.389 863.881 163.8000Corre
tion for in
ation has been undertaken up to the year 1980 whi
h means that losses would havebeen mu
h larger today. a) Fit a log-normal and 
he
k the �t through a Q-Q plot. b) Repeat a), but nowsubtra
t b = 5000 from all the observations prior to �tting the log-normal. 
) Any 
omments?Exer
ise 9.3.3 Alternatively the hurri
ane loss data of the pre
eding exer
ise might be des
ribed throughGamma distributions. You may either use likelihood estimates (software needed) or the moment estimatesderived in Se
tion 9.3; see (1.15). a) Fit gamma distributions both to the orginal data and when you sub-tra
t 5000 �rst. Che
k the �t by Q-Q plotting. Another way is to �t transformed data, say y1; : : : ; yn. Onepossibility is to take yi = log(zi � 5000) where z1; : : : ; zn are the original losses. b) Fit the Gamma modelto y1; : : : ; yn and verify the �t though Q-Q plotting. 
) Whi
h of the models you have tested in this and thepre
eding exer
ise should be 
hosen? Other possibiltities?Exer
ise 9.3.4 Consider a log-normal 
laim Z = exp(� + �") where " � N(0; 1) and � and � are pa-rameters. a) Argue that skew(Z) does not depend on � [Hint: Use a general property of skewness.℄. To
al
ulate skew(Z) we may therefore take � = 0, and we also need the formula Efexp(a")g = exp(a2=2). b)Show that(Z � e�2=2)3 = Z3 � 3Z2e�2=2 + 3Ze�2 � e3�2=220



so that 
) the third order moment be
omes�3(Z) = E(Z � e�2=2)3 = e9�2=2 � 3e5�2=2 + 2e3�2=2:d) Use this together with sd(Z) = e�2=2pe�2 � 1 to dedu
e thatskew(Z) = exp(3�2)� 3 exp(�2) + 2(exp(�2)� 1)3=2 :e) Show that skew(Z)! 0 as � ! 0 and 
al
ulate skew(Z) for � = 0:1, 1, 2. The value for � = 1 
orrespondsto the density fun
tion plotted in Figure 2.4 right.Exer
ise 9.3.5 This exer
ise is a follow-up of Exer
ise 9.2.5, but it is now assumed that that the un-derlying model is known to be log-normal. The natural estimate of � is then �̂ = s where s is the samplestandard deviation of y1 = log(z1); : : : ; yn = log(zn). As usual z1; : : : ; zn is the orginal log-normal 
laims.Skewness is then estimated by inserting �̂ for � in the skewness formula in Exer
ise 9.3.4 d). a) Repeata), b) and 
) in Exer
ise 9.2.5 with this new estimation method. b) Try to draw some 
on
lusions aboutthe patterns in the estimation errors. Does it seem to help that we know what the underlying distribution is?Se
tion 9.4Exer
ise 9.4.1 Let Z be exponentially distributed with mean �. a) Show that the over-threshold variableZb has the same distribution as Z. b) Comment on how this result is linked to the similar one when Z isPareto with �nite �.Exer
ise 9.4.2 Suppose you have 
on
luded that the de
ay parameter � of a 
laim size distribution isin�nite so that the over-threshold model exponential. We 
an't use the s
ale estimate (1.20) now. How willyou modify it? Answer: The method in Exer
ise 9.4.6.Exer
ise 9.4.3 a) Simulate m = 10000 observations from a Pareto distribution with � = 1:8 and � = 1and pretend you do not known the model they are 
oming from. b) Use the Hill estimate on the 100 largestobservations. 
) Repeat a) and b) four times. Try to see some pattern in the estimates 
ompared to thetrue � (whi
h you know after all!) d) Redo a), b) and 
) with m = 100000 simulations and 
ompare withthe earlier results.Exer
ise 9.4.4 The Burr model, introdu
ed in Exer
ise 2.5.4, had distribution fun
tionF (x) = 1� f1 + (x=�)�1g��2 ; x > 0:where �, �1 and �2 are positive parameters. Sampling was by inversion. a) Generatem = 10000 observationsfrom this model when �1 = 1:5, �2 = 1:2 and � = 1. b) Compute �̂ as the Hill estimate from the 100 largestobservations. 
) Comment on the dis
repan
y from the produ
t �1�2. Why is this 
omparision relevant? d)Compute �̂b from the 100 largest simulations using (1.20). e) Q-Q plot the 100 largest observations againstthe Pareto distribution with parameters �̂ and �̂. Any 
omments?Exer
ise 9.4.5 a) Generate m = 10000 observations from the lognormal distribution with mean � = 1and � = 0:5. b) Compute the Hill estimate based on the 1000 largest observations 
) Repeat a) and b) fourtimes. Any patterns? d) Explain why the value you try to estimate is in�nite. There is a strong bias inthe estimation that prevents that to be rea
hed. It doesn't help you mu
h to raise the threshold and go tom = 100000!Exer
ise 9.4.6 a) As in the pre
eding exer
ise generate m = 10000 observations from the lognormaldistribution with mean � = 1 and � = 0:5. The over-threshold distribution is now for large b exponential.21



b) Estimate its mean � through the sample mean of the 1000 largest observations subtra
ted b = z9000 andQ-Q plot the 1000 largest observations against this �tted exponential distribution. Comments?Se
tion 9.5Exer
ise 9.5.1 Consider a mixture model of the formZ = (1� Ib)Ẑ + Ib(b+ Zb) where Zb � Pareto(�; �); Pr(Ib = 1) = 1� Pr(Ib = 0) = pand Ẑ is the empiri
al distribution fun
tion over z(1); : : : ; z(n1). It is assumed that b � z(n1) and that Ẑ,Ib and Zb are independent. a) Determine the (upper) per
entiles of Z. [Hint: The expression depend onwhether � < p or not.℄ b) Derive E(Z) and var(Z), [Hint: One way is to use the rules of double expe
tationand double varian
e, 
onditioning on Ib.℄Exer
ise 9.5.2 a) Redo the following exer
ise when Zb is exponential with mean � instead of a Paretoproper. b) Comment on the 
onne
tion by letting �!1 and keeping � = �=(�� 1) �xed.Exer
ise 9.5.3 a) How is Algorithm 9.2 modi�ed when the over-threshold distribution is exponential withmean �? b) Implement the algorithm.Exer
ise 9.5.4 We shall use the algorithm of the pre
eding exer
ise to 
arry out an experiment basedon the log-normal Z = exp(��2=2+�") where " � N(0; 1) and � = 1. a) Generate a Monte Carlo sample ofn = 10000 and use those as histori
al data after sorting them as z(1) � : : : � z(n). In pra
ti
e you would notthat they are log-normal, but assume that they are known to light-tailed enough for the the over-thresholddistribution to be exponential. The empiri
al distribution fun
tion is used to the left of the threshold. b)Fit a mixture model by taking p = 0:05 and b = z(9500) [Hint: You take the mean of the 500 obervationsabove the threshold as estimate of the parameter � of the exponential.℄. 
) Generate a Monte Carlo sampleof m = 10000 from the �tted mixture distribution and estimate the upper 10% and 1% per
entiles from thesimulations. d) Do they 
orrespond to the true ones? Compare with their exa
t values you obtain fromknowing the underlying distribution in this laboratory experiment.Se
tion 9.6Exer
ise 9.6.1 We shall in this exer
ise test the Hill estimate �̂ de�ned in (1.15) and the 
orresponding �̂bin (1.16) on the the Danish �re data (downloadable from the �le danish�re.txt.). a) Determine the estimateswhen p = 50%, 10% and p = 5%. b) Compare with the values in Table 9.1 whivh were obtained by likelihoodestimation.Exer
ise 9.6.2 Consider histori
al 
laim data starting at b (known). A useful family of transformations isY = (Z � a)� � 1� for � 6= 0;where � is sele
ted by the user. a) Show that Y ! log(Z � b) as � ! 0 [Hint: L'hôpital's rule℄. Thisshows that the logarithm is the spe
ial 
ase � = 0. The family is known as the Box-Cox transformations.We shall use it to try to improve the modelling of the Danish �re data in Se
tion 9.6. Download the datafrom danish�re.txt. b) Use a = �0:00001 and � = 0:1 and �t the Gamma model to the Y -data. [Hint:Either likelihood or moment, as in Se
tion 9.3℄. 
) Verfy the �t by Q-Q plotting. d) Repeat b) and 
) when� = �0:1. e) Whi
h of the transformations appears best, � = 0 (as in Figure 9.6.3) or one of those in thisexer
ise?Exer
ise 9.6.3 Suppose a 
laim Z starts at some known value b. a) How will you sele
t a in the Box-Coxtransformation of the pre
eding exer
ise if you are going to �t a positive family of distributions (gamma,log-normal) to the transformed Y -data? b) The same question if you are going to use a model (for examplethe normal) extending over the entire real axis. 22


