
1 Modelling laim size1.1 IntrodutionModels desribing variation in laim size lak the theoretial underpinning provided by the Poissonpoint proess in Chapter 8. The traditional approah is to impose a family of probability distri-butions and estimate their parameters from historial laims z1; : : : ; zn (orreted for ination ifneessary). Even the family itself is often determined from experiene. An alternative with onsid-erable merit in the omputer age is to throw all prior matematial onditions over board and relysolely on the historial data. This is known as a non-parametri approah. Muh of this hapteris on the use of historial data.How we go about is partly ditated by the size of the reord, and here the variablity from onease to another is enormous. With automobile insurane the number of observations n may behuge, providing a good basis for deduing the probability distribution of the laim size Z. Byontrast, major inidents in industry (like the ollapse of an oil rig!) are rare, making historialmaterial sare. This span of variation is reeted in the presentation below. Basi issues are para-metri versus non-parametri methods and (above all) the extreme right tail of distributions. Lakof historial data in the region that matters most �nanially suggests that this problem deservesspeial attention. The mathematial framework is mixing (Setion 9.5) in ombination with thetail haraterization theorem from the theory of extremes (Setion 9.4).1.2 Parametri and non-parametri modellingIntrodutionClaim size modelling an be parametri through families of distributions suh as the Gamma,log-normal or Pareto with parameters tuned to historial data or non-parametri where eahlaim zi of the past is assigned a probability 1=n of re-appearing in the future. A new laim is thenenvisaged as a random variable Ẑ for whihPr(Ẑ = zi) = 1n; i = 1; : : : ; n: (1.1)As model for Z this is an entirely proper distribution (sine its sum over all i is one). If it appearspeuliar, there are atually several points in its favour (one in its disfavour too); see below. Notethe notation Ẑ whih is the familiar way of emphasizing that estimation has been involved. Themodel is known as the empirial distribution funtion and will in Setion 9.5 employed as abrik in an edi�e that also involves the Pareto distribution. The purpose of this setion is toreview parametri and non-parametri modelling on a general level.Sale families of distributionsAll sensible parametri models for laim size are of the formZ = �Z0; (1.2)where � > 0 is a parameter, and Z0 is a standardized random variable orresponding to � = 1.This proportionality is inherited by expetations, standard deviations and perentiles; i.e. if �0, �01



and q0� are expetation, standard deviation and �-perentile for Z0, then the same quantities for Zare � = ��0; � = ��0 and q� = �q0�: (1.3)To see what � stands for, suppose urreny is hanged as a part of some international transation.With  as the exhange rate the laim quoted in foreign urreny beomes Z, and from (1.2)Z = (�)Z0. The e�et of passing from one urreny to another is simply that � replaes �, theshape of the density funtion remaining what it was. Surely anything else makes little sense. Itwould, for example, be ontrived to take a view on risk that di�ered in terms of US$ from that inBritish $ or euros, and the same point applies to ination (Exerise 9.2.1).In statistis � is known as a parameter of sale and parametri models for laim size shouldalways inlude them. An example worth ommenting is the log-normal distribution used in earlierhapters. If it is on the form Z = exp(� + �") where " is N(0; 1), we may also write itZ = �Z0 where Z0 = exp(�12�2 + �") and � = exp(� + �22 ):Here E(Z0) = 1, and � serves as both expetation and sale parameter. The mean is often themost important of all quantities assoiated with a distribution, and it is useful to make it visibleas the sale parameter. Suh tatis has in this book been followed whenever pratial.Fitting a sale familyModels for sale families satisfy the relationshipPr(Z � z) = Pr(Z0 � z=�) or F (zj�) = F0(z=�):where F0(z) is the distribution funtion of Z0. Di�erentiating with respet to z yields the familyof density funtionsf(zj�) = 1� f0( z� ); z > 0 where f0(z) = F 00(z): (1.4)Additional parameters desribing the shape of the distributions are hiding in f0(z). All sale fam-ilies have density funtions on this form.The standard way of �tting suh models is through likelihood estimation. If z1; : : : ; zn are thehistorial laims, the riterion beomesL(�; f0) = �n log(�) + nXi=1 logff0(zi=�)g; (1.5)whih is to be maximized with respet to � and other parameters. Numerial methods are usuallyrequired. A useful extension overs situations with ensoring. Typial examples are laims onlyregistered as above or below ertain limits, known as ensoring to the right and left respetively.Most important is probably the situation where the atual loss is only given as some lower boundb. The probability of this happening is 1� F0(b=�) leading tof1� F0(b1=�)g � � � f1 � F0(bn=�)g 2



as the probability of nr suh events. Its logarithm is added to the log likelihood (1.5) of the fullyobserved laims z1; : : : ; zn making the riterionL(�; f0) = �n log(�) + nXi=1 logff0(zi=�)g + nrXi=1 logf1� F0(bi=�)g; (1.6)omplete information ensoring to the rightwhih is to be maximized. Censoring to the left is similar and disussed in Exerise 9.2.3. Detailswill be developed for the Pareto family in Setion 9.4.Shifted distributionsSometimes the distribution of a laim starts at some some threshold b instead of at the orgin.Obvious examples are dedutibles and ontrats in re-insurane. Models an be onstruted byadding b to variables Z starting at the origin; i.e.Z>b = b+ Z = b+ �Z0:Now Pr(Z>b � z) = Pr(b+ �Z0 � z) = Pr�Z0 � z � b� � ;and di�erentiating with respet to z yieldsf>b(zj�) = 1� f0 �z � b� � ; z > b; (1.7)as density funtion for variables starting at b.Sometimes historial laims z1; : : : ; zn are known to exeed some unknown threshold b. Theirminimum provides an estimate, preiselyb̂ = min(z1; : : : ; zn)�C; for unbiasedness: C = � Z 10 f1� F0(z)gn dz; (1.8)see Exerise 9.2.4 for the unbiasedness orretion. It is rarely worth the trouble to take that tooseriously, and auray is typially high even when it isn't done1. The estimate is known to besuper-eÆient, whih means that its standard deviation for large sample sizes is proportional to1=n rather than the usual 1=pn; see Lehmann and Casella (1998). Other parameters an be �ttedby applying the methods below to the sample z1 � b̂; : : : ; zn � b̂.Skewness as simple desription of shapeA major issue in laim size modelling is the degree of asymmetry towards the right tail of thedistribution. A useful, simple summary is the oeÆient of skewness de�ned as� = skew(Z) = �3�3 where �3 = E(Z � �)3: (1.9)1The adjustment requires C to be estimated. It is in any ase sensible to subtrat some small numberC > 0 from the minimum to make zi � b̂ stritly positive. Software may rash otherwise.3



The numerator is the third order moment. Skewness should not depend on the urreny beingused and doesn't sineskew(Z) = E(Z � �)3�3 = E(�Z0 � ��0)3(��0)3 = E(Z0 � �0)3�30 = skew(Z0)after inserting (1.2) and (1.3). Neither is the oeÆient hanged when Z is shifted by a �xedamount; i.e. skew(Z + b) = skew(Z) through the same type of reasoning. These properties on�rmskewness as a (simpli�ed) representation of the shape of a distribution.The standard estimate of the skewness oeÆient � from observations z1; : : : ; zn is�̂ = �̂3s3 where �̂3 = 1n� 3 + 2=n nXi=1(zi � �z)3: (1.10)Here �̂3 is the natural estimate of the third order moment2 and s the sample standard devia-tion. The estimate is for low n and heavy-tailed distributions typially severely biased downwards.Under-estimation of skewness, and by impliation the risk of large losses, is a reurrent theme withlaim size modelling in general and is ommon even when parametri families are used. Several ofthe exerises are devoted to the issue.Non-parametri estimationThe random variable Ẑ that attahes probabilities 1=n to all laims zi of the past is a possible modelfor future laims. Its de�nition in (1.1) as a disrete set of probabilities may seem at odds with theunderlying distribution being ontinuous, but experiene in statistis (see Efron and Tibshriani,1994) suggests that this matters little. As with other distributions there are an expetation, astandard deviation, a skewness oeÆient and also perentiles. All those are losely related to theordinary sample versions. For example, the mean and standard deviation of Ẑ are by de�nitionE(Ẑ) = nXi=1 1nzi = �z; and sd(Ẑ) =  nXi=1 1n(zi � �z)2!1=2 := s: (1.11)Upper perentiles are (approximately) the historial laims in desending order; i.e.q̂" = z("n) where z(1) � : : : � z(n):The skewness oeÆient is also similar; see Exerise 9.2.8.The empirial distribution funtion an only be visualized as dot plot where the observationsz1; : : : ; zn are reorded on a straight line to make their tightness indiate the underlying distribu-tion. If you want a density funtion, turn to the kernel estimate in Setion 2.2, whih is related toẐ in the following way. Let " be a random variable with mean 0 and standard deviation 1, andde�ne Ẑh = Ẑ + hs"; where h � 0: (1.12)2Division on n� 3 + 2=n makes it unbiased. 4



The distribution of Ẑh oinides with the estimate (??); see Exerise 9.2.9. Note thatvar(Ẑh) = s2 + (hs)2 so that sd(Ẑh) = sp1 + h2;a slight ination in unertainty over that found in the historial data. With the usual hoies of hthat an be ignored. Sampling is still easy (Exerise 9.2.10), but usually there is not muh pointin using a positive h for other things than visualization.In �nane the empirial distribution funtion is often alled historial simulation. It is ultra-rapidto set up and to simulate (use Algorithm 4.1), and there is no worry as to whether a parametrifamily �ts or not. On the other hand, no simulated laim an be larger than what has been seenobserved in the past. How serious that drawbak is depends on the situation. It may not mattertoo muh when there is extensive experiene to build on. In the big onsumer branhes of motorand housing we have presumably seen muh of the worst. The empirial distribution funtion analso be used with big laims when the responsibility per event is strongly limited, but if it is not,the method an go seriously astray and under-estimate risk substantially. Even then is it possibleto ombine the method with spei� tehniques for tail estimation as in Setion 9.5.1.3 The Log-normal and Gamma families of distributionsIntrodutionTwo of the most frequently applied desriptions of laim size unertainty are the log-normal andGamma models. Both are of the form Z = �Z0 where � is expetation. The standard log-normalZ0 an be de�ned through its stohasti representationZ0 = exp(�12�2 + �") where " � N(0; 1) (1.13)whereas we for the standard Gamma must be use its density funtionf0(z) = ���(�)z��1 exp(��z); z > 0; (1.14)see (??). This setion is devoted to a brief exposition of the main properties of these models.The log-normal: A quik summaryLog-normal density funtions were plotted in Figure 2.4. Their shape depended heavily on � andhad a highly skewed form when � was not too lose zero; see also Figure 9.2 below. Mean, standarddeviation and skewness areE(Z) = �; sd(Z) = �fexp(�2)� 1g1=2; skew(Z) = exp(3�2)� 3 exp(�2) + 2(exp(�2)� 1)3=2 ;see Setion 2.3. The expession for the skewness oeÆient is derived in Exerise 9.3.5.Parameter estimation is usually arried out by noting thatY = log(Z) = log(�)� 12�2 + � ";mean sd 5
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Figure 9.1 Left: Q-Q plot of standard Gamma perentiles against the normal. Right: StandardGxamma density funtions.an immediate onsequene of the de�nition above. A log-normal sample z1; : : : ; zn is then trans-formed to a Gaussian one y1 = log(z1); : : : ; yn = log(zn), and the sample mean and variane �y andsy of the latter produe estimates of � and � throughlog(�̂)� 12 �̂2 = �y; �̂ = sy whih yields �̂ = exp(12s2y + �y); �̂ = sy:The log-normal distribution is used everywhere in this book.Properties of the Gamma modelGood operational qualities and exible shape makes the Gamma model useful in many ontexts.Mean, standard deviation and skewness areE(Z) = �; sd(Z) = �=p� and skew(Z) = 2=p�; (1.15)and the model possesses a so-alled onvolution property. Let Z01; : : : ; Z0n be an independentsample from Gamma(�). Then�Z0 � Gamma (n�) where �Z0 = (Z01 + : : :+ Z0n)=n;see Appendix A. In other words, the average is another standard Gamma variable, the shape nowbeing n�. By the entral limit theorem �Z0 also tends to the normal as n ! 1, and this provesthat Gamma variables beome normal as � !1. This is visible in Figure 9.1 left where Gammaperentiles are Q-Q plotted aganst normal ones. The line is muh straightened out as � = 10 isreplaed by � = 100. A similar tendeny is seen among the density funtions in Figure 9.1 rightwhere two of the shapes were used with stohasti intensies in Setion 8.5. More general versionsof the onvolution property are given among the exerises.6



Fitting the Gamma familiyThe method of moments (Setion 7.3) is the simplest way to determine Gamma parameters � and� from a set of historial data z1; : : : ; zn. If the theoretial expressions are mathed sample meanand standard deviation �z and s, we obtain�z = �̂; s = �̂=p� with solution �̂ = �z; �̂ = (�z=s)2:Likelihood estimation is slightly more aurate, and is available in ommerial software, but it isnot diÆult to implement on your own. The logarithm of the density funtion of the standardGamma islogff0(z)g = � log(�) � logf�(�)g + (�� 1) log(z)� �zwhih an be inserted into (1.5). After some simple manipulations this yields the log likelihoodfuntionL(�; �) = n� log(�=�) � n log �(�) + (�� 1) nXj=1 log(zj)� �� nXj=1 zj : (1.16)Note that�L�� = �n�� + ��2 nXi=1 zi; zero when � = (z1 + : : :+ zn)=n = �z:It follows that �̂ = �z is the likelihood estimate and L(�z; �) an be traked under variation of � forthe maximizing value �̂; see also the bisetion method in Appendix B.Regression for laims sizeSometimes you may want to examine whether laim size tend to be systematially higher withertain ustomers than with others. To the author's experiene the issue is not so important as itwas with laim frequeny, but we should know how it's done. Basis are historial data similar tothose in Setion 8.4, now of the formz1 x11 � � � x1vz2 x21 � � � x2v� � � � � �� � � � � �zn xn1 � � � xnv;losses ovariatesand the question is how we use them to understand how a future, reported loss Z are onneted toexplanatory variables x1; : : : ; xv . The standard approah is throughZ = �Z0 where log(�) = b0 + b1x1 + : : :+ bvxv;and E(Z0) = 1. As the explanatory variables utuate, so does the mean loss �.Frequently applied models for Z0 are log-normal and Gamma. The former simply boils downto ordinary linear regression. The logarithm of the laim in then used as as dependent variable andthe explanatory variables �tted through ordinary least squares. Gamma regression is available inommerial software and implemented as likelihood �tting through an extension of (1.16). For anexample, see Setion 10.3. 7



1.4 The Pareto family and extremesIntrodutionThe Pareto distributions, introdued in Setion 2.6, are among the most heavy-tailed of all modelsin pratial use and potentially a onservative hoie when evaluating risk in property insurane.Density and distribution funtions aref(z) = �=�(1 + z=�)1+� and F (z) = 1� 1(1 + z=�)� ; z > 0:Simulation was easy (Algorithm 2.8), and the model was used for illustration in several of theearlier hapters. But Pareto distributions also play a speial role in the mathematial desriptionof the extreme right tail. There are, perhaps surprisingly, general results in that diretion. Thatis the main topi of this setion. How Pareto models were �tted historial data was explained inSetion 7.3; ensoring is added below.PropertiesPareto models are so-heavy-tailed that even the mean may fail to exist (that's why another param-eter � represents sale). Formulae for expetation, standard deviation and skewness are� = E(Z) = ��� 1 ; sd(Z) = � � ��� 2�1=2 ; skew(Z) = 2� ��� 2�1=2 �+ 1�� 3 ; (1.17)valid for � > 1, � > 2 and � > 3 respetively. It is to the author's experiene rare in pratie thatthe mean doesn't exist, but in�nite varianes with values of � between 1 and 2 are not unfrequent.The exponential distribution appears in the limit when the ratio � = �=(�� 1) is kept �xed and �raised to in�nity; see Setion 2.6. This result is of some importane for the extreme value theoryited below. In this sense the Pareto and the Gamma families interset. The exponential distribu-tion is a heavy-tailed Gamma and the most light-tailed Pareto.One of the most important properties of the Pareto family is its behaviour at the extreme righttail. The issue is de�ned by the over-threshold model whih is the distribution of Zb = Z � bgiven Z > b. Its density funtion (derived in Setion 6.2) isfb(z) = f(b+ z)1� F (b) ;see (??). It beomes partiularly simple with Pareto models. Inserting the expressions for f(z)and F (z) yieldsfb(z) = (1 + b=�)��=�(1 + (z + b)=�)1+� = �=(� + b)f1 + z=(� + b)g1+�Pareto density funtionafter some simple manipulations. This is again a Pareto density. The shape � is the same as before,whereas the parameter of sale has beome �b = � + b. In other words, over-threshold models forPareto variables remain Pareto with shape unaltered. The mean (if it exists) is known as themeanexess funtion, and beomesE(ZbjZ > b) = �b�� 1 = � + b�� 1 = � + b�� 1 (requires � > 1): (1.18)8



It is larger than the original � and inreases linearly with b.Over-threshold modelling in generalThe tail property of Pareto models has a general extension. When b beomes in�nite, only thisfamily an appear no matter (almost) what the distribution of Z was in the beginning! The mainondition is that the distribution of Z has no upper limit (it must also be ontinuous). There iseven a theory when Z is bounded by some given maximum, but suh models are rarely naturalto employ. For that extension see Embrets, Kl�uppelberg and Mikosh (1997) whih also detailertain weak regularity onditions that must be satis�ed. The result (whih will not be proved)goes bak at least to Pikands (1975).For the preise formulation let P (zj�; �) be the distribution funtion of Pareto(�; �) and de�neFb(z) = Pr(Zb � zjZ > b) = Pr(Z � b+ zjZ > b)as the over threshold distribution funtion of an arbitrary random variable Z satisfying the on-ditions above. The somewhat ompliated statement is that there exists a positive parameter �(possibly in�nite) suh we an for all thresholds b �nd parameters �b that makesmaxz�0 jFb(z)� P (zj�; �b)j ! 0; as b!1:This tells us that disrepanies between the two distribution funtions vanish as the thresholdgrows. At the end they are equal, and the over-threshold distribution has beome a member of thePareto family. We saw above that the result is exat and applies for �nite b (with �b = �+ b) whenthe original model is Pareto itself.Whether we get a Pareto proper (with �nite �) or an exponential (in�nite �) depends on theright tail of the distribution funtion F (z). The determining fator is how fast 1 � F (z) ! 0 asz !1. A deay of order 1=z� yields Pareto (with shape �). A simple example of suh polynomialdeay is the Burr distribution of Exerise 2.5.4 for whih the distribution funtion isF (z) = 1� f1 + (z=�)�1g��2 or for z large 1� F (z) := f(z=�)�1g��2 = z��1�2 ;and � = �1�2. Many distributions used in pratie have lighter tails. The Gamma and the log-normal are but two examples of distributions deaying faster than any polynomial �. Now thelimiting over-threshold model is the exponential. Illustrations are provided in Exerises 9.4.3-6.The Hill estimateThe deay rate � an be determined from historial data (though they have to be plenty). Apopular method is the Hill estimate�̂�1 = 1n� n1 nXi=n1+1 log z(i)z(n1)! (1.19)where z(1) � : : : � z(n) are the data sorted in asending order and n1 is user seleted. Ideally n1=nshould be lose to one and n�n1 large whih requires n huge. The Hill estimate is used for generaldistributions, but (as we saw above) � is also the shape of an approximating Pareto model. There9



is a link here that an be used to derive the estimate.Suppose �rst that z1; : : : ; zn ome from a pure Pareto distribution with known sale parameter�. The likelihood estimate of � was derived in Setion 7.3 as�̂�1� = 1n nXi=1 log(1 + zi� );see also below. We may apply this result to observations exeeding some large threshold b, say toz(n1+1)� b; : : : ; z(n)� b. For large enough b this sample is approximate Pareto with sale parameterb+ �. It follows that the likelihood estimate beomes�̂�1� = 1n� n1 nXi=n1+1 log�1 + z(i) � bb+ � � = 1n� n1 nXi=n1+1 log�z(i) + �b+ � � :But we are assuming that b (and by onsequene all z(i)) is muh larger than �. Henelog�z(i) + �b+ � � := log�z(i)b � = log z(i)z(n1)! if b = z(n1);oinides (almost) with �̂ in (1.19). A number of justi�ations of the Hill estimate an be foundin Chapter 6 of Embrets, Kl�uppelberg and Mikosh (1997). It is onsistent and onverges to thetrue value as n!1 and n1=n! 1.The method is tested among the exerises. It does provide the shape of the over-threshold dis-tribution, but there is a sale parameter �b too, and we an't use the Pareto model to assessunertainty without it. A simple estimate is�̂b = z(n2) � z(n1)21=�̂ � 1 where n2 = 1 + n1 + n2 ; (1.20)whih utilizes that �(21=� � 1) is the median under Pareto(�; �) whereas the over-theshold dataz(n1+1) � z(n1); : : : ; z(n) � z(n1) have median z(n2) � z(n1):A possible estimate is therefore �̂b(21=�̂ � 1) = z(n2) � z(n1) whih is (1.20).Likelihood methodsAn alternative way of determining the over-threshold distribution is to apply Pareto likelihoodestimation to observations exeeding it. Tehnially it is a little more work than through the Hillestimate; see Setion 7.3 for details.The Pareto model is also a good example with whih to show how ensored information is utilized.Observations are now in two groups, either the ordinary, fully observed laims z1; : : : ; zn or those(nr of them) known to have exeeded ertain thresholds b1; : : : ; bnr , but not by how muh. The loglikelihood funtion for the �rst group is as in Setion 7.3; i.e.n log(�=�) � (1 + �) nXi=1 log(1 + zi� ); 10



whereas for the the ensored part we must add ontributions from knowing that Pr(Zi > bi). Theprobability of this happening isPr(Zi > bi) = 1(1 + bi=�)� or logfPr(Zi > bi)g = �� log(1 + bi� );and when all those are taken into aount, we obtain the full log likelihoodL(�; �) = n log(�=�) � (1 + �) nXi=1 log(1 + zi� ) � � nrXi=1 log(1 + bi� ):omplete information Censoring to the rightwhih is to be maximized, a numerial problem very muh the same as in Setion 7.31.5 Large laim situationsIntrodutionThe big laims play a speial role beause of their importane �nanially. It is also hard to assesstheir distribution. They (lukily!) do not our very often, and historial experiene is thereforelimited. Indeed, insurane ompanies may give over to laims larger than have been seen earlier.What should our approah be in these situations? The simplest would be to �t a parametri fam-ily and extrapolate beyond past experiene, but that may not be a very good idea. A Gammadistribution may �t well in the entral regions without being reliable at all at the extreme righttail. Indeed, suh a proedure may easily underestimate big laims risk severely; see Setion 9.6. APareto model would be more onservative, and then there is the result due to Pikands that pointsto this distribution as a general desription above all large thresholds. There is an idea here, andthe purpose of the present setion is to develope it.An approah through mixturesHistorial laims look shematially like the following:Ordinary size LargeClaims: z(1); : : : ; z(n1) b z(n1+1); : : : ; z(n)rrr r r rrrrrr r r r rrr rThere are many values in the small and medium range to the left of the vertial bar and justa few (or none!) large ones to the right of it. What is atually meant by `large' is not lear-ut,but let us say that we have seleted a threshold b de�ning `large' laims as those exeeding it. Theoriginal laims z1; : : : ; zn have been ranked in asending order asz(1) � z(2) : : : � z(n)so that observations from z(n1) and smaller are below the threshold and those from z(n1+1) andlarger are above. How the threshold b is hosen in pratie is disussed below; see also the numer-ial illustrations in Setion 9.6. 11



A strategy is to divide modelling into separate parts de�ned by the threshold. A random vari-able (or laim) Z may always be writtenZ = (1� Ib)Z�b + IbZ>b (1.21)where Z�b = ZjZ � b; Z>b = ZjZ > bentral region extreme right tail and Ib = 0 if Z � b= 1 if Z > b: (1.22)The random variable Z�b is Z on�ned to the region to the left of b, and Z>b is similar to the right.It is easy to hek that two sides of (1.21) are equal, but at �rst sight this merely looks ompliated.Why on earth an it help us? The point is that we have reated a framework reahing out to twodi�erent soures of information. To the left of the threshold there is the historial data with whihwe may identify a model. On the right the result due to Pikands suggests a Pareto distribution.This de�nes a modelling strategy whih will now be developped.The empirial distribution mixed with ParetoThe preeding argument lead to a two-omponent approah whih an be implemented in manyways. For example, to the left of b we ould �t a parametri model. It would extend beyond b, butthat may not matter too muh; see Exerise ??. Another idea is to use non-parametri modelling,and this is the method that will be developed in detail with the threshold seleted as one of theobservations. Choose some small probability p and let n1 = n(1� p) and b = z(n1) . Then takeZ�b = Ẑ and Z>b = z(n1) + Pareto(�; �); (1.23)where Ẑ follows the empirial distribution funtion over z(1); : : : ; z(n1); i.e.Pr(Ẑ = z(i)) = 1n1 ; i = 1; : : : ; n1: (1.24)The remaining part (the deliate one!) are the parameters are � and � and the hoie of p. Plentyof historial data would deal with everything. Under suh irumstanes p an be determined lowenough (and hene b high enough) for the Pareto approximation to be a good one, and historialdata to the right of b provides estimates �̂ and �̂. There are even sophistiated, automated teh-niques for the seletion of p, see ? and ?. In pratie you might do just as well with trial and error.An example of this kind is disussed in the next setion.With more limited experiene (as is ommon) is is hard to avoid a subjetive element. One ofthe advantages of dividing modelling into two omponents is that it lari�es the domain wherepersonal judgment enters. If you take the view that a degree of onservatism is in order when thereis insuÆient information for auray, that an be ahieved by plaing b low and using Paretomodelling to the right of it. Numerial experiments that supports suh a strategy are arried outin the next setion. Muh material on modelling extremes an be found in Embrets, Kl�uppelbergand Mikosh (1997).Sampling mixture models 12



As usual a sampling algorithm is also a summary of how the model is onstruted. With the em-pirial distribution used for the entral region it runs as follows:Algorithm 9.2 Claims by mixtures0 Input: Sorted laims z(1) � : : : � z(n), p, n1 = n(1� p), � and �.1 Draw uniforms U�1 , U�22 If U�1 > p then3 i�  1 + [n1U�2 ℄ and Z�  z(i�) %The empirial distribution, Algorithm 4.1else4 Z�  b+ �f(U�2 )�1=� � 1g %Pareto, Algorithm 2.85 Return Z�The algorithm operates by testing whether the laim omes from the entral part of the distri-bution or from the extreme, right tail over b. Other distributions ould have been used on Line 3.The present version is extremely quik to implement.1.6 Searhing for the modelIntrodutionA �nal model for laim size is the result of di�erent deliberations. Historial data have typially beenutilized through a non-parametri approah or with parametri families. We may also have hangedthe variable. The idea is then that standard families of distributions may �t a transformed vari-able better than the original one, and with re-transformation afterwards the model again applies toordinary laims. One of our worries should be model error. Does the distribution seleted reetthe unertainty of real life? If there are small amounts of data to go on, the disrepany ouldbe huge. Should that lean us towards onervative hoies? If aurate mathematial desriptionsare beyond reah anyway, it ould be an argument in favour of heavy-tailed distributions like Pareto.The purpose of this setion is to indiate how these themes enter by means of two very di�er-ent examples. We have already met the Norwegian fund for natural disasters in hapter 7 wherethere were just n = 21 historial inidents to rely on. By ontrast the so-alled Danish �re laimswill serve our needs for a `large' data set. Many authors on atuarial siene have used it as atest ase; see Embrehts, Kl�uppelberg and Mikosh(1997) where more on their orgin is given. Thehistorial reord omprises n = 2167 industrial �res. Damages start at one million Danish kroner(DKK)3 with 263 as a maximum and with average �z = 3:39, standard deviation s = 8:51 andskewness oeÆient  = 18:7. The latter indiates very heavy tails and strong skewness towardsthe right. This also emerges learly from the plots in Figure 9.2 and 9.3 below.Working with transformationsA useful tool for modelling is to hange data by means of a transformation, say H(z). The situationis then as follows:z1; : : : ; zn y1 = H(z1); : : : ; yn = H(zn):original data new data3There are about eight Danish kroner in one euro.13
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Figure 9.2 The log-normal model �tted the Danish �re data on log-sale. Density funtion withkernel density estimate (left) and Q-Q plot (right).Modelling is then attaked through y1; : : : ; yn and Y = H(Z) instead of the original Z. The ideais to make one of the simple models �t better than ould be ahieved with Z itself. At the end were-transform bak through Z = H�1(Y ) with Z� = H�1(Y �) for the Monte Carlo. The log-normalis a familiar example. Then H(z) = log(z) and H�1(y) = exp(y) with Y normal. The logarithm isthe most ommonly used transformation of all. Frequently applied alternatives are powers Y = Z�where � 6= 0 is a some given index; see also Exerise 9.6.2. The hoie of transformations (typiallymade by trial and error) is a seond feature that adds exibility to the usual families of distributions.Variations on this theme are indeed many. With logaritms we might takeY = log(1 + Z) Y = log(Z);Y positive Y over the entire real lineand entirely di�erent families of distributions would be used for Y . As an example onsider theDanish �re laims where we must take into aount that they run from 1 and upwards (in milllionDKK). That makes Y = log(Z) positive, and one possibility ould be the log-normal throughZ = eY ; Y = �ye��2=2+�" with estimates �̂y = 1:19; �̂ = 1:36:Here " is N(0; 1). An alternative is the Gamma familiy. Let Y0� be Gamma distributed with meanone and shape � and onsiderZ = eY ; Y = �yY0� with estimates �̂y = 0:79; �̂ = 1:16:Both pairs of estimates are likelihood ones.What is immediately lear from the huge disrepany in the estimated means �y is that bothmodels an't �t. Indeed, the log-normal doesn't work. Its estimated density funtion (Figure 9.214
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Figure 9.3. The Gamma model �tted the Danish �re data on log-sale. Density funtion withkernel density estimate (left) and Q-Q plot (right).left, horizontal axis on logarithmi sale) mathes the kernel density estimate poorly, but (as usual)Q-Q plotting (Figure 9.2 right) provides a better view. The right tail of the log-normal is too heavyand exaggerates the risk of extreme laims grossly4. By ontrast the Gamma �t as displayed inFigure 9.3 is muh better. Perhaps the extreme right tail is slightly too light, but the �t isn't anend in itself, and onsequenes for the evaluation of the reserve is not neessarily serious. That willbe examined in Setion 10.3; see also Exerise 9.6.2 where a slight modi�ation will improve the�t.Pareto and Pareto mixingThe Pareto model is so heavy-tailed on its own that it ould be tried on the raw Danish �re data di-retly (without log-transform). It is also a strong andidate for the extreme right tail (Setion 9.4).Indeed, with suh an extensive data reord it is tempting to forget all about parametri families anduse the strategy advoated in Setion 9.5 using the empirial distribution funtion for the entralpart and Pareto on the right. Table 9.2 shows the results of �tting Pareto distributions (throughmaximum likelihood) over various thresholds b. As b is being raised, the situation should beomemore and more Pareto-like (Pikand's theorem). Under a strit Pareto regime, the shape parameter� is the same for all b whereas the sale parameter depends on b through �b = b� 1 + �=(� � 1);see Exerise ?. Strething the imagination a bit there are reminisenes of this in Table 9.1 where� is more stable than �; see Exerise 9.4.1 for detailed alulations.But it would be a gross exaggeration to prolaim the data to be Pareto distributed. Q-Q plots fortwo of the over threshold distributions is shown in Figure 9.4. There is a reasonable �t on the right(above 5%), but not on the left (above 50%) where the Pareto distribution �tted has heavier tails4Note that the 167 largest observations have been left out to make the resolution in other parts of theplot better 15
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Figure 9.4 Q-Q plots of �tted Pareto distributions against the empirial distribution funtion, 50%largest observations (left) and 5% largest (right).that the empirial ounterpart. Table 9.1 tell us why. The two shape parameters estimated (1:42and 2:05) deliver quite unequal extreme unertainty.Tiny historial reordsHow should we onfront a situation like the one in Table 7.1 (the Norwegian natural disasters)where there were no more than n = 21 laims in total, and where the phenomenon itself surely isheavy-tailed with potential losses muh larger than those on reord? The underlying distributionan't be determined with muh auray, yet somehow a model must be found. One possibility isgeophysial modelling. Natural disasters are then simulated in the omputer and their ost ountedfrom detailed, physial desriptions of houses and installations. Evaluations of this kind are arriedout around the world, but they are outside out natural range of topis, and we shall onentrateon what an be extrated from historial losses.If you �t the Gamma and Pareto family to the natural disasers by maximum likelihood, the resultslook like this:Unit: Million DKK Part of data �ttedAll 50% largest 10% largest 5% largestThreshold (b) 1.00 1.77 5.56 10.01Shape (�) 1.64 1.42 1.71 2.05Sale (�) 1.52 1.82 7.75 14.62Table 9.1 Pareto parameters for the over threshold distribution of the �re laims.16



Shapes in true models: 1.71 in Pareto, 0.72 in Gamma. 1000 repetitions.True Historial reord: n = 21 Historial reord: n = 80model Models found Models foundPareto Gamma log-normal Pareto Gamma log-normalPareto .49 .29 .22 .72 .12 .16Gamma .44 .51 .05 .34 .66 0Table 9.2 Probabilites of seleting given models (Bold fae: Corret seletion).Shape Mean 5% 1% Shape Mean 5% 1%0.72 179 603 978 1.71 200 658 1928Gamma family Pareto familyThese are very di�erent families of distributions, yet their disrepanies, though onsiderable, arenot enormous in the entral region (say up to the upper 5% perentile). For the very large laimsthat hanges, and the Pareto 1% perentile is twie that of the Gamma. There is a lesson here.Many families �t reasonably well up to some moderate threshold. That makes modelling easierwhen there are strong limits on responsibilities. If it isn't, the hoie between parametri familiesbeomes a more deliate one.The right family: Impossible?Inidentally, how impossible is it to determine the family from small amounts of data? Suppose aQ-Q plot is used. A given family suh as Gamma or Pareto is then evaluated by omparing theirestimated perentiles q̂i to empirial ones z(i) where the former orrespond to distributions �ttedthe data. What is atually done when the two sequenes are mathed, is unlear (di�erent waysfor di�erent people), but perhaps some try to minimizeQ = nXi=1 jq̂i � z(i)j: (1.25)This riterion has been proposed as basis for formal goodness of �t tests in Devroye (1971). Itould be that humans do it a little better, but results using other ritera didn't deviate that muhfrom those in Table 9.2.Monte Carlo experiments were run with m = 1000 repliations aording to the following sheme:True model Parametri family triedPareto �tting q̂�1 � : : : � q̂�nor �! z�1 ; : : : ;� z�n �! �! Q� =Pi jz�(i) � q̂�i j:Gamma historial data sorting z�(1) � : : : z�(n)Simulated historial data were drawn from the Pareto or Gamma model on the left and the model(possibly a di�erent one!) �tted. That gave estimated perentiles q̂�i whih ould be omparedto purely empirial ones z�(i) and a value of the riterion Q� omputed for the parametri modeltried. When Pareto, Gamma and log-normal were �tted to the same historial data, we obtainthree di�erent evaluations Q�, and the distribution orresponding to the smallest, best-�tting onewas piked. The seletion statistis is shown in Table 9.2. It is learly impossible to hoose betweenthe three models when there are only n = 21 laims. The hane is improved with n = 80 and with17



m = 1000 repliationsTrue model: Pareto, shape = 1:71 True model: Gamma, shape = 0:72Reord: n=21 Reord: n=80 Reord: n=21 Reord: n=80Perentiles (%) 25 75 90 25 75 90 25 75 90 25 75 90Fitted Pareto 0.4 1.5 2.9 0.7 1.3 1.7 0.8 1.4 2.2 0.9 1.3 1.6Fitted Gamma 0.3 0.6 1.0 0.4 0.7 0.9 0.8 1.1 1.3 0.9 1.1 1.2Model seleted 0.4 1.2 2.3 0.6 1.2 1.6 0.8 1.2 1.5 0.9 1.1 1.3Table 9.3 The distribution (as 25 70 and 90 perentiles) of �̂ = q̂0:01=q0:01 where q̂0:01is �tted and q0:01 true 1% perentiles of laims. Bold fae: Corret parametri family used.n = 400 (not shown) the suess probability was about 0:90 � 0:95.Data in short supply: What then?The preeding experiment showed the futility of trying to identify models from small amounts ofhistorial data, but when faed with suh situations, how should they be attaked? Here are sometentative suggestions. A good deal hinges on the maximum responsibility b per laim. If it issmaller than the largest observation z(1), it ould be a ase for the empirial distribution funtion.That doesn't help us muh with the Norwegian natural disasters from Setion 7.4 where b is muhlarger than z(1), and risk would be grossly under-estimated by that method. Surely the Paretodistribution is one of the leading ontenders now. It is a onservative hoie (whih seems sensible),possibly estimation errors undermine some of that aution.These points are illustrated by the experiment in Table 9.3 where the issue is the onsequenesof being wrong. For example, if the underlying distribution is a member of the Gamma family,how does a Pareto �t perform? Or what about estimated Gamma perentiles when the true modelis Pareto? Clauses of maximum payments have muh bearing on this (as mentioned), but theseproblems an also be inspeted through�̂ = q̂"q" for " = 1%:Patterns in how �̂ deviate from 1 reveal the impat of model and estimation error jointly. Sup-pose the Gamma family is �tted to laims that are atually Pareto distributed. It then emergesfrom Table 9.3 (Line two from bottom) that the 90% perentile of �̂ is at most one; i.e. q0:01 isalmost ertain to be under-estimated! The tendeny is reversed when the Pareto model is appliedto Gamma-distributed losses. Now the perentile is over-estimated. Certainly, we are doing some-thing silly, and yet in pratie we might not know. The method that omes on top in Table 3 is thelast one where the perentiles are omputed form the best-�tting of both the Gamma and Paretodistributions, i.e. the alternative minimizing (1.25) has been piked. Now the the distribution of �̂varies around one, though with huge errors.In summary it seems sensible to try determine the family empirially even for small data sets(though we often guess wrong). If we go for onservatism and aution, the Pareto model may bethe answer despite the huge unertainty of the �tted parameters.18



1.7 Further reading1.8 ExerisesSetion 9.2Exerise 9.2.1 The ost of settling a laim hanges from Z to Z(1 + I) if I is the rate of ination betweentwo time points. a) Suppose laim size Z is Gamma(�; �) in terms of the old prie system. What are theparameters under the new, inated prie? b) The same same question when the old prie is Pareto(�; �). )Again the same question when Z is log-normally distributed. d) What is the general rule for inorporatingination into a parametri model of the form (1.4)?Exerise 9.2.2 This is a follow-up of the preeding exerise. Let z1; : : : ; zn be historial data olletedover a time span inuened by ination. We must then assoiate eah laim zi with a prie level Qi = 1+ Iiwhere Ii is the rate of ination. Suppose the laims have been ordered so that z1 is the �rst (for whihI1 = 0) and zn the most reent. a) Modify the data so that a model that an be �tted from them. b) Ensurethat the model applies to the time of the most reent laim. Imagine that all ination rates I1; : : : ; In anbe read o� from some relevant index.Exerise 9.2.3 Consider nl observations ensored to the left. This means that eah Zi is some bi orsmaller (by how muh isn't known). With F0(z=�) as the distribution funtion de�ne a ontribution to thelikelihood similar to right ensoring in (1.6).Exerise 9.2.4 Families of distribution with unknown lower limits b an be de�ned by taking Y = b + Zwhere Z starts at the orgin. Let Yi = b+ Zi be an independent sample (i = 1; : : : :n) and de�neMy = min(Y1; : : : ; Yn) and Mz = min(Z1; : : : ; Zn):a) Show that E(My) = b+E(Mz). b) Also show thatPr(Mz > z) = f1� F (z)gn so that E(Mz) = Z 10 f1� F (z)gn dz;where F (z) is the distribution funtion of Z [Hint: Use Exerise ??? for the expetation.℄. ) With F (z) =F0(z=�) dedue thatE(My) = b+ Z 10 f1� F0(z=�)gn dz = b+ � Z 10 f1� F0(z)gn dzand explain how this justi�es the bias orretion (1.8) when b̂ =My is used as estimate for b.Exerise 9.2.5 We shall in this exeriise onsider simulated, log-normal historial data, estimate skew-ness through the ordinary estimate (1.10) and examine how it works when the answer is known (look it upin Exerise 9.3.5 below). a) Generate n = 30 log-normal laims using � = 0 and � = 1 and ompute theskewness oeÆient (1.10). b) Redo four times and remark on the pattern when you ompare with the truevalue. ) Redo a),b) when � = 0:1. What about the patterns now? d) Redo a) and b) for n = 1000. Whathas happened?Exerise 9.2.6 Consider the pure empirial model Ẑ de�ned in (1.1). Show that third order momentand skewness beome�3(Ẑ) = 1n nXi=1(zi � �z)3 so that skew(Ẑ) = n�1Pni=1(zi � �z)3s3 ;where �z and s are sample mean and standard deviation.19



Exerise 9.2.7 Consider as in (1.12) Zh = Ẑ + hs" where " � N(0; 1), s the sample standard devia-tion and h > 0 is �xed. a) Show thatPr(Zh � zjẐ = zi) = ��z � zihs � (�(z) the normal integral):b) Use this to dedue thatPr(Zh � z) = 1n nXi=1 ��z � zihs � :) Di�erentiate to obtain the density funtion of Zh and show that it orresponds to the kernel densityestimate (??) in Setion 2.2.Exerise 9.2.8 Show that a Monte Carlo simulation of Zh an be generated from two uniform variables U�1and U�2 throughi�  [1 + nU�1 ℄ followed by Z�h  zi� + hs��1(U�2 )where ��1(u) is the perentile funtion of the standard normal. [Hint: Look up Algorithms 2.3 and 4.1℄.Setion 9.3Exerise 9.3.1 The onvolution property of the Gamma distribution is often formulated in terms of anindependent Gamma sample of the form Z1 = �Z01; : : : ; Zn = �Z0n where Z01; : : : ; Z0n are distributed asGamma(�). a) Verify that S = Z1 + : : :+ Zn = (n�) �Z0 where �Z0 = (Z01 + : : :+ Z0n)=n. b) Use the resulton �Z0 ited in Setion 9.3 to dedue that S is Gamma distributed too. What are its parameters?Exerise 9.3.2 The data below, taken from Beirlant, Teugels and Vynkier (1996) were originally om-piled by The Amerian Insurane Assoiation and show losses due to single hurrianes in the US over theperiod from 1949 to 1980 (in money unit million US$).6.766 7.123 10.562 14.474 15.351 16.983 18.383 19.030 25.30429.112 30.146 33.727 40.596 41.409 47.905 49.397 52.600 59.91763.123 77.809 102.942 103.217 123.680 140.136 192.013 198.446 227.338329.511 361.200 421.680 513.586 545.778 750.389 863.881 163.8000Corretion for ination has been undertaken up to the year 1980 whih means that losses would havebeen muh larger today. a) Fit a log-normal and hek the �t through a Q-Q plot. b) Repeat a), but nowsubtrat b = 5000 from all the observations prior to �tting the log-normal. ) Any omments?Exerise 9.3.3 Alternatively the hurriane loss data of the preeding exerise might be desribed throughGamma distributions. You may either use likelihood estimates (software needed) or the moment estimatesderived in Setion 9.3; see (1.15). a) Fit gamma distributions both to the orginal data and when you sub-trat 5000 �rst. Chek the �t by Q-Q plotting. Another way is to �t transformed data, say y1; : : : ; yn. Onepossibility is to take yi = log(zi � 5000) where z1; : : : ; zn are the original losses. b) Fit the Gamma modelto y1; : : : ; yn and verify the �t though Q-Q plotting. ) Whih of the models you have tested in this and thepreeding exerise should be hosen? Other possibiltities?Exerise 9.3.4 Consider a log-normal laim Z = exp(� + �") where " � N(0; 1) and � and � are pa-rameters. a) Argue that skew(Z) does not depend on � [Hint: Use a general property of skewness.℄. Toalulate skew(Z) we may therefore take � = 0, and we also need the formula Efexp(a")g = exp(a2=2). b)Show that(Z � e�2=2)3 = Z3 � 3Z2e�2=2 + 3Ze�2 � e3�2=220



so that ) the third order moment beomes�3(Z) = E(Z � e�2=2)3 = e9�2=2 � 3e5�2=2 + 2e3�2=2:d) Use this together with sd(Z) = e�2=2pe�2 � 1 to dedue thatskew(Z) = exp(3�2)� 3 exp(�2) + 2(exp(�2)� 1)3=2 :e) Show that skew(Z)! 0 as � ! 0 and alulate skew(Z) for � = 0:1, 1, 2. The value for � = 1 orrespondsto the density funtion plotted in Figure 2.4 right.Exerise 9.3.5 This exerise is a follow-up of Exerise 9.2.5, but it is now assumed that that the un-derlying model is known to be log-normal. The natural estimate of � is then �̂ = s where s is the samplestandard deviation of y1 = log(z1); : : : ; yn = log(zn). As usual z1; : : : ; zn is the orginal log-normal laims.Skewness is then estimated by inserting �̂ for � in the skewness formula in Exerise 9.3.4 d). a) Repeata), b) and ) in Exerise 9.2.5 with this new estimation method. b) Try to draw some onlusions aboutthe patterns in the estimation errors. Does it seem to help that we know what the underlying distribution is?Setion 9.4Exerise 9.4.1 Let Z be exponentially distributed with mean �. a) Show that the over-threshold variableZb has the same distribution as Z. b) Comment on how this result is linked to the similar one when Z isPareto with �nite �.Exerise 9.4.2 Suppose you have onluded that the deay parameter � of a laim size distribution isin�nite so that the over-threshold model exponential. We an't use the sale estimate (1.20) now. How willyou modify it? Answer: The method in Exerise 9.4.6.Exerise 9.4.3 a) Simulate m = 10000 observations from a Pareto distribution with � = 1:8 and � = 1and pretend you do not known the model they are oming from. b) Use the Hill estimate on the 100 largestobservations. ) Repeat a) and b) four times. Try to see some pattern in the estimates ompared to thetrue � (whih you know after all!) d) Redo a), b) and ) with m = 100000 simulations and ompare withthe earlier results.Exerise 9.4.4 The Burr model, introdued in Exerise 2.5.4, had distribution funtionF (x) = 1� f1 + (x=�)�1g��2 ; x > 0:where �, �1 and �2 are positive parameters. Sampling was by inversion. a) Generatem = 10000 observationsfrom this model when �1 = 1:5, �2 = 1:2 and � = 1. b) Compute �̂ as the Hill estimate from the 100 largestobservations. ) Comment on the disrepany from the produt �1�2. Why is this omparision relevant? d)Compute �̂b from the 100 largest simulations using (1.20). e) Q-Q plot the 100 largest observations againstthe Pareto distribution with parameters �̂ and �̂. Any omments?Exerise 9.4.5 a) Generate m = 10000 observations from the lognormal distribution with mean � = 1and � = 0:5. b) Compute the Hill estimate based on the 1000 largest observations ) Repeat a) and b) fourtimes. Any patterns? d) Explain why the value you try to estimate is in�nite. There is a strong bias inthe estimation that prevents that to be reahed. It doesn't help you muh to raise the threshold and go tom = 100000!Exerise 9.4.6 a) As in the preeding exerise generate m = 10000 observations from the lognormaldistribution with mean � = 1 and � = 0:5. The over-threshold distribution is now for large b exponential.21



b) Estimate its mean � through the sample mean of the 1000 largest observations subtrated b = z9000 andQ-Q plot the 1000 largest observations against this �tted exponential distribution. Comments?Setion 9.5Exerise 9.5.1 Consider a mixture model of the formZ = (1� Ib)Ẑ + Ib(b+ Zb) where Zb � Pareto(�; �); Pr(Ib = 1) = 1� Pr(Ib = 0) = pand Ẑ is the empirial distribution funtion over z(1); : : : ; z(n1). It is assumed that b � z(n1) and that Ẑ,Ib and Zb are independent. a) Determine the (upper) perentiles of Z. [Hint: The expression depend onwhether � < p or not.℄ b) Derive E(Z) and var(Z), [Hint: One way is to use the rules of double expetationand double variane, onditioning on Ib.℄Exerise 9.5.2 a) Redo the following exerise when Zb is exponential with mean � instead of a Paretoproper. b) Comment on the onnetion by letting �!1 and keeping � = �=(�� 1) �xed.Exerise 9.5.3 a) How is Algorithm 9.2 modi�ed when the over-threshold distribution is exponential withmean �? b) Implement the algorithm.Exerise 9.5.4 We shall use the algorithm of the preeding exerise to arry out an experiment basedon the log-normal Z = exp(��2=2+�") where " � N(0; 1) and � = 1. a) Generate a Monte Carlo sample ofn = 10000 and use those as historial data after sorting them as z(1) � : : : � z(n). In pratie you would notthat they are log-normal, but assume that they are known to light-tailed enough for the the over-thresholddistribution to be exponential. The empirial distribution funtion is used to the left of the threshold. b)Fit a mixture model by taking p = 0:05 and b = z(9500) [Hint: You take the mean of the 500 obervationsabove the threshold as estimate of the parameter � of the exponential.℄. ) Generate a Monte Carlo sampleof m = 10000 from the �tted mixture distribution and estimate the upper 10% and 1% perentiles from thesimulations. d) Do they orrespond to the true ones? Compare with their exat values you obtain fromknowing the underlying distribution in this laboratory experiment.Setion 9.6Exerise 9.6.1 We shall in this exerise test the Hill estimate �̂ de�ned in (1.15) and the orresponding �̂bin (1.16) on the the Danish �re data (downloadable from the �le danish�re.txt.). a) Determine the estimateswhen p = 50%, 10% and p = 5%. b) Compare with the values in Table 9.1 whivh were obtained by likelihoodestimation.Exerise 9.6.2 Consider historial laim data starting at b (known). A useful family of transformations isY = (Z � a)� � 1� for � 6= 0;where � is seleted by the user. a) Show that Y ! log(Z � b) as � ! 0 [Hint: L'hôpital's rule℄. Thisshows that the logarithm is the speial ase � = 0. The family is known as the Box-Cox transformations.We shall use it to try to improve the modelling of the Danish �re data in Setion 9.6. Download the datafrom danish�re.txt. b) Use a = �0:00001 and � = 0:1 and �t the Gamma model to the Y -data. [Hint:Either likelihood or moment, as in Setion 9.3℄. ) Verfy the �t by Q-Q plotting. d) Repeat b) and ) when� = �0:1. e) Whih of the transformations appears best, � = 0 (as in Figure 9.6.3) or one of those in thisexerise?Exerise 9.6.3 Suppose a laim Z starts at some known value b. a) How will you selet a in the Box-Coxtransformation of the preeding exerise if you are going to �t a positive family of distributions (gamma,log-normal) to the transformed Y -data? b) The same question if you are going to use a model (for examplethe normal) extending over the entire real axis. 22


