
STK 4020: Bayesian Statistics

Autumn 2010

Course Notes and Exercises

by Nils Lid Hjort

– This version: as of 25 August 2010 –

1. Prior to posterior updating with Poisson data

This exercise illustrates the basic prior to posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution.

We say that Z ∼ Gamma(a, b) if its density is

g(z) =
ba

Γ(a)
za−1 exp(−bz) on (0,∞).

Here a and b are positive parameters. Show that

E Z =
a

b
and VarZ =

a

b2
=

EZ

b
.

In particular, low and high values of b signify high and low variability, respectively.
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Figure 1: Eleven curves are displayed, corresponding to the Gamma(0.1, 0.1) intial

prior density for the Poisson parameter θ along with the ten updates following

each of the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.
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(b) Now suppose y | θ is a Poisson with parameter θ, and that θ has the prior distribution

Gamma(a, b). Show that θ | y ∼ Gamma(a + y, b + 1).

(c) Then suppose there are repeated Poisson observations y1, . . . , yn, being i.i.d. ∼ Pois(θ)

for given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior

before observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gamma(a + y1 + · · · + yn, b + n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gamma(0.1, 0.1) and that the Poisson data

are 6, 8, 7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 1 in your computer,

plotting the ten curves p(θ |dataj), where dataj is y1, . . . , yj, along with the prior

density. Also compute the ten Bayes estimates θ̂j = E(θ |dataj) and the posterior

standard deviations, for j = 0, . . . , 10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since the

Gamma continuous density matches the Poisson discrete density so nicely. Suppose

instead that the initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior

distributions, Bayes estimates and posterior standard deviations also in this case, and

compare with you found above.
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