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This is the exam project set for STK 4020/9020, autumn semester 2012. It is made available

on the course website as of Monday 3 December 12:00, and candidates must submit their

written reports by Friday 14 December 11:59 (or earlier), to the reception office at the

Department of Mathematics, in duplicate. The supplementary oral examinations take place

Monday December 17 (practical details concerning this are provided elsewhere). Reports

may be written in nynorsk, bokmål, riksmål, English or Latin, and should preferably be

text-processed (TeX, LaTeX, Word), but may also be hand-processed. Give your name on

the first page. Write concisely (in der Beschränkung zeigt sich erst der Meister; brevity

is the soul of wit; kratkostь – sestra talanta). Relevant figures need to be included

in the report. Copies of machine programmes used (in R, or matlab, or similar) are also

to be included, perhaps as an Appendix to the report. Candidates are required to work

on their own (i.e. without cooperation with any others), but are graciously allowed not to

despair if they do not manage to answer all questions well.

Importantly, each student needs to submit two special extra pages with her or his report.

The first (page A) is the ‘erklæring’ (self-declaration form), properly signed, and with the

appropriate course form STK 4020 (master level) or STK 9020 (PhD level) clearly marked;

it is available at the webpage as ‘Exam Project, page A, declaration form’. The second

(page B) is the student’s one-page summary of the exam project report, which should also

contain a brief self-assessment of its quality.

This exam set contains four exercises and comprises eight pages (including a one-page

Appendix). Note that the STK 9020 students need to answer also Exercise 4, whereas the

STK 4020 students can confine their attention to Exercises 1–3.

Exercise 1

Are bad-tempered men better at finding good-tempered women than the good-temp-

ered men are? Or, to rephrase such a delicate and intricate question, do good-tempered

women in their good-temperedness have a certain tendency to penetrate the shields of even

bad-tempered men? Sir Francis Galton did not merely invent fingerprinting and correlation

and regression and the two-dimensional normal distribution while working on anthropology

and genetics and meteorology or exploring the tropics, but had a formidable appetite for

even arcane psychometrics and for actually attempting to answer half-imprecise but good

questions like the above in meaningful ways – by going out in the world to observe, to

note, to think, to analyse (just as his perhaps even more famous cousin did).
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On an inspired day in 1887 he therefore sat down and examined interview results per-

taining to 111 married couples (see the Appendix), and classified the wives and husbands

into ‘bad-tempered’ and ‘good-tempered’, reaching the following table:

wife :
good-tempered bad-tempered

husband : good-tempered 24 27
bad-tempered 34 26

He did not merely compute the proportions of relevance to the question raised above, but

speculated about methods for answering whether the observed deviations from ‘there is no

difference’ were statistically significant (some ten years before such concepts slowly began

to take precise form in the statistics community). – Below it is your task to use the above

simple dataset to help illustrate certain Bayesian techniques which might have interested

Galton.

(a) Let us write (
N0,0 N0,1

N1,0 N1,1

)
=

(
24 27
34 26

)

for the counts Ni,j = #{X = i, Y = j} for i, j = 0, 1, with X the good- (0) or bad-

tempered (1) category for the husband and Y similarly the category for the wife. We

shall take take the observed counts to be a random sample from the multinomial model

with parameters (n, p0,0, p0,1, p1,0, p1,1), with pi,j interpreted as Pr{X = i, Y = j}

for a randomly selected married couple (X,Y ). Briefly discuss the validity of this

assumption. Also give clear interpretations to the quantities

αi = pi,0 + pi,1 for i = 0, 1,

βj = p0,j + p1,j for j = 0, 1.

(b) Your Bayesian duty is now to come up with a prior for (p0,0, p0,1, p1,0, p1,1) which

matches your prior beliefs concerning the world of married couples. For simplic-

ity you are asked to choose your prior from the class of Dirichlet distributions, say

Dir(a0,0, a0,1, a1,0, a1,1) with density

Γ(k)

Γ(a0,0)Γ(a0,1)Γ(a1,0)Γ(a1,1)
p
a0,0−1

0,0 p
a0,1−1

0,1 p
a1,0−1

1,0 (1− p0,0 − p0,1 − p1,0)
a1,1−1

over the simplex where the pi,j are positive with p0,0 + p0,1 + p1,0 < 1; also, k =

a0,0 + a0,1 + a1,0 + a1,1. Discuss, but briefly, how you arrived at your prior.

(c) We shall take an interest in the four parameters

φ =
∑

i,j

(pi,j − αiβj)
2/pi,j , κ = max

i,j
|pi,j − αiβj |,

γ = p0,0 + p1,1, δ = p0,1p1,0/(p0,0p1,1).

Explain how these parameters may be interpreted in the present context. For your

chosen prior, use simulation to display the 0.05, 0.50, 0.95 quantiles of these parame-

ters.
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(d) Using Galton’s data and your prior, derive the posterior distribution of the (p0,0, p0,1,

p1,0, p1,1). Again via simulation, display the 0.05, 0.50, 0.95 quantiles for the posterior

distribution of the four parameters φ, κ, γ, δ. Sum up your findings.

(e) With the multinomial model used here, derive the so-called Jeffreys prior. Please redo

part of or all of the analysis using this prior to complement your own. Briefly discuss

whether there are any noticeable discrepancies between the Jeffreys based analysis

and that based on your own prior.

Exercise 2

A thing of beauty is a joy for ever, but even a good car loses market and monetary

value as time marches on. The data below are a partial reconstruction and transformation

from my side of a bigger data set where I focus attention on how much a car is being sold

for, as a function of its age x (measured in years) since the initial sale as brand new, in

terms of this initial sale value, in percent y. Thus car no. 2 of these thirty cars was sold

after 1.90 years at a price 62.1% of its original price, etc.

x y x y x y

1.56 47.6 4.54 29.3 6.03 19.8

1.90 62.1 4.65 22.4 6.15 14.4

1.92 47.3 4.75 23.0 6.23 15.7

1.99 53.7 5.05 26.0 6.43 15.9

2.02 40.7 5.31 18.7 6.65 17.9

2.26 47.9 5.38 15.6 6.89 9.7

2.93 38.5 5.56 19.4 7.86 9.4

3.16 48.4 5.61 16.5 8.16 10.7

4.26 25.0 5.91 14.0 9.10 5.4

4.34 25.6 5.95 17.9 9.36 6.0

The model we shall use for these n = 30 pairs (xi, yi) is to treat the yi as conditionally

independent given the xi, and with

yi = a exp(−bxi)εi for i = 1, . . . , 30, (1)

where the εi are taken as i.i.d. from the gamma distribution with parameters (c, c), i.e. with

density

gc,c(u) =
cc

Γ(c)
uc−1 exp(−cu) for u > 0.

(a) First plot the data, along with an ordinarily estimated linear regression line. Briefly

discuss the differences between ordinary linear regression and the current model (1),

and explain how one may interpret its three parameters. If you see reasons why the

model (1) might be expected to work better than ordinary linear regression, give them.
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(b) Spend a little time generating and then looking at pseudo-data (xi, y
′

i) in your com-

puter, for different choices of the parameter triple (a, b, c), where you keep the xi as

given above but generate y′i from the model. Use this to put up some not unrea-

sonable prior for (a, b, c). It does not need to be particularly good, but you ought

to demonstrate that when you generate data from a model sampled from your prior,

then these are at least not very unreasonable.

(c) Show that the likelihood function may be expressed as

Ln(a, b, c) =
n∏

i=1

{
gc,c

( yi
a exp(−bxi)

) 1

a exp(−bxi)

}
.

Find the maximum likelihood estimates of the three model parameters. (You are ex-

pected to do this by programming the log-likelihood function and then using suitable

software, and where you may need to spend a little time finding a well-working start-

ing point for the algorithm in question. I find parameter estimates 90.8942, 0.2849,

44.0710.) Display the estimated regression curve with the data, and comment.

(d) Regardless of your efforts under point (b) you shall now work with the perhaps crude

prior that takes a, b, c as independent and uniform over the intervals [30, 100], [0.1, 5.0],

[0.5, 90.0], respectively. Set up a Markov Chain Monte Carlo scheme to generate

samples (a, b, c) from the resulting posterior distribution. Use output from such a

chain to give [1] 0.05, 0.50, 0.95 quantiles for the posterior distribution for the three

parameters and [2] estimated correlations between them. Briefly compare these results

with those for the ‘lazy Bayesian’ who uses the normal approximation associated with

maximum likelihood analysis.

(e) Compute 0.05, 0.50, 0.95 quantiles of the posterior distribution of t0, the ‘half-time’

for a car, i.e. the time point where its value is expected to be half the original price.

(f) Suppose you have a car that is x0 = 5.0 years old. You contemplate selling it and

wonder what price you will get. You are asked now to work with and display two

distributions, along with their 0.05, 0.50, 0.95 quantiles. The first is the posterior

distribution of µ, its expected price, expressed as percentage of the original price of

your car. The second is the predictive distribution of this not-yet-observed price Y

itself. Comment briefly on your findings.

Exercise 3

The tendency in modern civilisation is to make the world uniform, observes the first

non-European winner of the Nobel Prize in literature (in a conversation in 1930). This

exercise investigates ways of estimating uniformity parameters across different experiments.

(a) Suppose Y is a single observation from the uniform distribution on [0, θ], with θ an

unknown parameter. Find the mean and standard deviation of Y .
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(b) Then find a formula for the risk function Eθ(cY − θ)2 of the estimator cY as an

estimator of θ under squared error loss. Show that the best estimator of this type is

θ̂ = 1.5Y and give a formula for its risk function.

(c) Suppose now that θ has a prior density of the form

pb(θ) = b2θ exp(−bθ) for θ > 0,

where b is a positive prior parameter (taken so far to be a known number). Find the

explicit posterior density when Y is observed to be some value y. Show in fact that

θ | y can be represented as y+Expo(b), where Expo(b) is an exponential variable with

parameter b (i.e. with density b exp(−bz) for z > 0).

(d) Find the Bayes estimator θ̂B for the prior above, under squared error loss. Find the

risk function also of this estimator. For what range of θ values is the Bayes estimator

performing better than the natural frequentist estimator 1.5Y found above?

(e) In the setup above, with θ having the pb(θ) prior and Y | θ is uniform [0, θ], find the

mean and variance of Y . Find also the full marginal distribution of Y . (You may or

may not find it convenient to answer the second question first.)

(f) Assume now that there are independent observations Y1, . . . , Yn from n different uni-

form experiments, over intervals [0, θ1], . . . , [0, θn]. The risk of a procedure estimating

this ensemble of uniform parameters, with θ̃i estimating θi, is to be measured via the

average squared error loss function

L(θ, θ̃) = n−1

n∑

i=1

(θ̃i − θi)
2.

Find first the risk function for the frequentist method using θ̂i = 1.5Yi for i = 1, . . . , n.

(g) For the prior that takes θ1, . . . , θn independent from the same prior b2θ exp(−bθ),

what is the Bayes estimator (θ̂B,1, . . . , θ̂B,n)? When the fine-tuning parameter b of

the prior cannot be easily agreed upon, argue from an empirical Bayes perspective

that a natural estimator is in fact

θ∗i = Yi + Ȳ , where Ȳ = n−1

n∑

i=1

Yi.

(h) Find the risk function for the empirical Bayes method. Try to characterise the set of

parameter values (θ1, . . . , θn) for which the empirical Bayes method performs better

than the frequentist ‘each experiment separately’ method. For this you may find

it fruitful to analyse risk functions in terms of average value θ̄ and spread κ2 =

n−1
∑n

i=1
(θi − θ̄)2. Briefly discuss your findings.
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(i) For the purposes of illustration, suppose now that there were twelve different exper-

iments as described above, carried out in twelve different Belgian laboratories and

associated with unknown parameters θi, yielding data yi as follows:

0.422, 7.185, 0.937, 8.940, 0.789, 5.657, 2.032, 0.133, 0.651, 2.743, 0.566, 7.631.

In addition to computing the frequentist and empirical Bayes estimates one wishes a

full Bayesian analysis, including 90% credibility intervals for each θi. Try to carry out

such an analysis, where the setup is as above, but with a noninformative start prior

π(b) = b−1 for the hyperparameter b of the pb(θi) = b2θi exp(−bθi) prior used for the

twelve θi, etc. You are not necessarily required to construct an identical version of

the plot below, but you should aim at computing and displaying such 90% credibility

intervals for the θi.

(j) Finally include in your analysis 0.05, 0.50, 0.95 quantiles of the posterior distributions

of [1] overall mean θ̄, [2] overall spread κ, and [3] the ratio κ/θ̄. Comment on your

findings.
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For the twelve uniform experiments, ordered here from the smallest to the largest
observation, the figure displays point estimates θ̂i (small circles, on the dotted
lines) and empirical Bayes estimates θ∗i (small triangles, on the full lines). Also in-
dicated are ordinary experiment-by-experiment 90% confidence intervals (dotted
lines; the six top confidence intervals actually extend rather longer than to what
I chose as upper plotting point limit for the figure), and 90% Bayes credibility
intervals (full lines). The vertical line indicates the overall estimate n−1

∑n

i=1
θ∗i .
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Exercise 4 – for the PhD students taking STK 9020 only

The number of PhD candidates in the kingdom of Norway has more than doubled over

the past ten years (from 4124 in 2002 to 9041 in 2011, actually). This is mindboggingly

spellbindingly fantastic.

By the general rules of the Faculty of Mathematics and Natural Sciences those taking

the PhD STK 9020 version of this course are required to be examined and evaluated in a

somewhat different manner from those taking the STK 4020 version. We solve this here

by demanding that the STK 9020 candidates work also with the present Exercise 4 (those

among the STK 4020 students eager to work with this exercise too are however welcomed

to do so). This exercise is as follows.

I have uploaded Andrew Gelman’s 2008 article Objections to Bayesian Statistics to

the course website, taken from the Bayesian Analysis online journal, along with discussion

contributions by José Bernardo, Jay Kadane, Stephen Senn, Larry Wasserman, and Gel-

man’s rejoinder (Gelman is himself a prominent Bayesian, but chose nevertheless to air

some of his objections to parts of Bayesian practice in this manner).

Read through the Gelman 2008 paper and ensuing discussion, and write up a short

essay (perhaps three pages?) where you (a) briefly sum up just a few points from this

discussion and (b) choose one or twho of these themes for further elaboration from your

side. You are very much invited to present your own views as relevant for your own work

(ongoing or prospective). I emphasise that you are not necessarily required to care about

all of the Gelman 2008 discussion; you are instead supposed to find something there worth

discussing further from your own perspectives or tastes.
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Appendix: Measuring good-temperedness and bad-temperedness

To help assess or ascertain whether you or persons near you are good-tempered or bad-

tempered, perhaps via interviews with members of your own family (across several gen-

erations), below are the criteria Galton instructed his data compilers to use. Matching

a high enough number of epithets on the ‘good’ list makes you a good-tempered person,

and correspondingly with the ‘bad’ list. Galton had such data for nearly two thousand

individuals, and appears to have been specifically interested in the inheritance aspect, how

and to what degree character traits are passed on to the next generation. The data set

used for this project’s Exercise 1 are extracted from these data, using the 111 married

couples.

Good temper: amiable, buoyant, calm, cool, equable, forbearing, gentle, good, mild,

placid, self-controlled, submissive, sunny, timid, yielding. (15 epithets in all.)

Bad temper: acrimonious, aggressive, arbitrary, bickering, capricious, captious, cho-

leric, contentious, crotchety, decisive, despotic, domineering, easily offended, fiery, fits of

anger, gloomy, grumpy, harsh, hasty, headstrong, huffy, impatient, imperative, impetuous,

insane temper, irritable, morose, nagging, obstinate, odd-tempered, passionate, peevish,

peppery, proud, pugnacious, quarrelsome, quick-tempered, scolding, short, sharp, sulky,

sullen, surly, uncertain, vicious, vindictive. (46 epithets in all.)

Discussing these criteria at some length, Galton includes the following comment: ‘We

can hardly, too, help speculating uneasily upon the terms that our own relatives would

select as most appropriate to our particular selves.’
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