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1. Prior to posterior updating with Poisson data

This exercise illustrates the basic prior to posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution.

We say that Z ∼ Gamma(a, b) if its density is

g(z) =
ba

Γ(a)
za−1 exp(−bz) on (0,∞).

Here a and b are positive parameters. Show that

EZ =
a

b
and VarZ =

a

b2
=

EZ

b
.

In particular, low and high values of b signify high and low variability, respectively.
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Figure 1: Eleven curves are displayed, corresponding to theGamma(0.1, 0.1) intial
prior density for the Poisson parameter θ along with the ten updates following
each of the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.
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(b) Now suppose y | θ is a Poisson with parameter θ, and that θ has the prior distribution

Gamma(a, b). Show that θ | y ∼ Gamma(a+ y, b+ 1).

(c) Then suppose there are repeated Poisson observations y1, . . . , yn, being i.i.d. ∼ Pois(θ)

for given θ. Use the above result repeatedly, e.g. interpreting p(θ | y1) as the new prior

before observing y2, etc., to show that

θ | y1, . . . , yn ∼ Gamma(a+ y1 + · · ·+ yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having

emerged sequentially.

(d) Suppose the prior used is a rather flat Gamma(0.1, 0.1) and that the Poisson data

are 6, 8, 7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 1 in your computer,

plotting the ten curves p(θ | dataj), where dataj is y1, . . . , yj , along with the prior

density. Also compute the ten Bayes estimates θ̂j = E(θ | dataj) and the posterior

standard deviations, for j = 0, . . . , 10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since the

Gamma continuous density matches the Poisson discrete density so nicely. Suppose

instead that the initial prior for θ is a uniform over [0.5, 50]. Try to compute posterior

distributions, Bayes estimates and posterior standard deviations also in this case, and

compare with you found above.

2. The Master Recipe for finding the Bayes solution

Consider a general framework with data y, in a suitable sample space Y; having likelihood

p(y | θ) for given parameter θ (stemming from an appropriate parametric model), with θ

being inside a parameter space Ω; and with loss function L(θ, a) associate with decision

or action a if the true parameter value is θ, with a belonging to a suitable action space

A. This could be the real line, if a parameter space is called for; or a two-valued set

{reject, accept} if a hypothesis test is being carried out; or the set of all intervals, if the

statistician needs a confidence interval.

A statistical decision function, or procedure, is a function â:Y → A, getting from data y

the decision â(y). Its risk function is the expected loss, as a function of the parameter:

R(â, θ) = EθL(θ, â) =

∫
L(θ, â(y))p(y | θ) dy.

(In particular, in this expectation operation the random element is y, having its p(y | θ)

distribution for given parameter, and the integration range is that of the sample space Y.)

So far the framework does not include Bayesian components per se, and is indeed a useful

one for frequentist statistics, where risk functions for different decision functions (be they

estimators, or tests, or confidence intervals, depending on the action space and the loss

function) may be compared.
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We are now adding one more component to the framework, however, which is that of a

prior distribution p(θ) for the parameter. The overall risk, or Bayes risk, associated with

a decision function â, is then the overall expected loss, i.e.

BR(â, p) = ER(â, θ) =

∫
R(â, θ)p(θ) dθ.

(Here θ is the random quantity, having its prior distribution, making also the risk function

R(â, θ) random.) The minimum Bayes risk is the smallest possible Bayes risk, i.e.

MBR(p) = min{BR(â, p): all decision functions â}.

The Bayes solution for the problem is the strategy or decision function âB that succeeds

in minimising the Bayes risk, with the given prior, i.e.

MBR(p) = BR(âB , p).

The Master Theorem about Bayes procedures is that there is actually a recipe for finding

the optimal Bayes solution âB(y), for the given data y (even without taking into account

other values y′ that could have been observed).

(a) Show that the posterior density of θ, i.e. the distribution of the parameter given the

data, takes the form

p(θ | y) = k(y)−1p(θ)p(y | θ),

where k(y) is the required integration constant
∫
p(θ)p(y | θ) dθ. This is the Bayes

theorem.

(b) Show also that the marginal distribution of y becomes

p(y) =

∫
p(y | θ)p(θ) dθ.

(I follow the GCSR book’s convention regarding using the ‘p’ multipurposedly.)

(c) Show that the overall risk may be expressed as

BR(â, p) = EL(θ, â(Y ))

= EE {L(θ, â(Y )) |Y }

=

∫ {∫
L(θ, â(y))p(θ | y) dθ

}
p(y) dy.

The inner integral, or ‘inner expectation’, is E{L(θ, â(y)) | y}, the expected loss given

data.
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(d) Show then that the optimal Bayes strategy, i.e. minimising the Bayes risk, is achieved

by using

âB(y) = argming = the value a0 minimising the function g,

where g = g(a) is the expected posterior loss,

g(a) = E{L(θ, a) | y}.

The g function is evaluated and mininised over all a, for the given data y. This is the

Bayes recipe. – For examples and illustrations, with different loss functions, see the Nils

2008 Exercises.

3. Minimax estimators

For a decision function â, bringing data y into a decision â(y), its max-risk is

Rmax(â) = max
θ

R(â, θ).

We say that a procedure a∗ is minimax if it minimises the max-risk, i.e.

Rmax(a
∗) ≤ Rmax(â) for all competitors â.

Here I give recipes (that often but not always work) for finding minimax strategies.

(a) For any prior p and strategy â, show that

MBR(p) ≤ Rmax(â).

(b) Assume a∗ is such that there is actually equality in (a), for a suitable prior p. Show

that a∗ is then minimax.

(c) Assume more generally that a∗ is such that MBR(pm) → Rmax(a
∗), for a suitable

sequence of priors pm. Show that a∗ is indeed minimax.

We note that minimax strategies often but not always have constant risk functions, and

that they need not be unique – different minimax strategies for the same problem need to

have identical max-risks, but the risk functions themselves need not be identical.

4. Minimax estimation of a normal mean [cf. Nils 2008 #3, 6, 9]

A prototype normal mean model is the simple one with a single observation y ∼ N(θ, 1).

We let the loss function be squared error, L(θ, a) = (a− θ)2.

(a) Show that the maximum likelihood (ML) solution is simply θ∗ = y. Show that its risk

function is R(θ∗, θ) = 1, i.e. constant.

(b) Let θ have the prior N(0, τ2). Show that (θ, y) is binormal, and that θ | y ∼ N(ρy, ρ),

with ρ = τ2/(τ2 + 1). In particular, θ̂B(y) = ρy is the Bayes estimator.
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(c) Find the risk function for the Bayes estimator, and identify where it is smaller than

that of the ML solution, and where it is larger. Comment on the situation where τ is

small (and hence ρ), as well as on the case of τ being big (and hence ρ close to 1).

(d) Show that MBR(N(0, τ2)) = ρ = τ2/(τ2 + 1). Use the technique surveyed above to

show that y is indeed minimax.

(e) This final point is to exhibit a technique for demonstrating, in this particular situation,

that y is not only minimax, but the only minimax solution – this was given as Exercise

#9(e) in the Nils 2008 collection, but without any hints. Assume that there is a

competitor θ̂ that is different from y and also a minimax estimator. Then, since risk

functions are continuous (show this), there must be a positive ε and a non-empty

interval [c, d] with

R(θ̂, θ) ≤

{
1− ε on [c, d],
1 everywhere.

Deduce from this that

MBR(N(0, pτ )) ≤ BR(θ̂, pτ ) ≤

∫

[c,d]

(1− ε)pτ (θ) dθ +

∫

elsewhere

1 · pτ (θ) dθ,

writing pτ for the N(0, τ2) prior. This leads to

ε(2π)−1/2 1

τ

∫

[c,d]

exp(− 1
2θ

2/τ2) dθ ≤ 1−MBR(pτ ) =
1

τ2 + 1
.

Show that this leads to a contradiction: hence y is the single minimax estimator in

this problem.

(f) Generalise the above to the situation with y1, . . . , yn ∼ N(θ, σ2).

5. Minimax estimation of a Poisson mean [cf. Nils 2008 #12]

Let y | θ be a Poisson with mean parameter θ, which is is to be estimated with weighted

squared error loss L(θ, t) = (t− θ)2/θ. This case was treated in Nils 2008 #12, but here I

add more, to take care of the more difficult admissibility point #12(g), where the task is

to show that y is the only minimax estimator.

(a) Show that the maximum likelihood (ML) estimator is y itself, and that its risk function

is the constant 1.

(b) Consider the prior distribution Gamma(a, b) for θ. Show that E θ = a/b and that

E θ−1 = b/(a− 1) if a > 1, and infinite if a ≤ 1.

(c) Show that θ | y is a Gamma(a+ y, b+ 1), from which follows

E(θ | y) =
a+ y

b+ 1
and E(θ−1 | y) =

b+ 1

a− 1 + y
.

The latter formula holds if a − 1 + y > 0, which means for all y if a ≥ 1, but care is

needed if a < 1 and y = 0. Show that the Bayes solution is

θ̂ =
a− 1 + y

b+ 1
for all y ≥ 0,
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provided a ≥ 1, but that we need the more careful formula

θ̂ =

{
(a− 1 + y)/(b+ 1) if y ≥ 1,
0 if y = 0,

in the case of a < 1.

(d) Taking care of the simplest case a > 1 first, show that

MBR(pa,b) =
1

b+ 1
,

writing pa,b for the Gamma prior (a, b). This is enough to demonstrate that y is indeed

minimax, cf. the Nils 2008 #12 Exercise.

(e) Attempt to show that y is the only minimax estimator via the technique of the previous

exercise, starting with a competitor θ̃ with risk function always bounded by 1 and

bounded by say 1 − ε on some non-empty parameter interval [c, d]. Show that this

leads to

ε

∫

[c,d]

pa,b(θ) dθ ≤ 1−MBR(p[a,b]).

For the easier case of a > 1, this gives a simple right hand side, but, perhaps irri-

tatingly, not a contradiction – one does not yet know, despite certain valid and bold

mathematical efforts, whether y is the unique minimax method or not.

(f) Since the previous attempt ended with ‘epic fail’, we need to try out the more difficult

case a < 1 too. Show that

E{L(θ, θ̂) | y} =

{
1/(b+ 1) if y ≥ 1,
a/(b+ 1) if y = 0.

Deduce from this a minimum Bayes risk formula also for the case of a < 1:

MBR(pa,b) =
1

b+ 1

{
1−

( b

b+ 1

)a}
+

a

b+ 1

( b

b+ 1

)a

.

(g) Find a sufficiently clever sequence of Gamma priors (am, bm), with am → 1 from the

left and bm → 0 from the right, that succeeds in squeezing a contradiction out of

equality in point(e). Conclude that y is not only minimax, but the only minimax

strategy.

(h) Generalise these results to the situation where y1, . . . , yn are independent and Poisson

with rates c1θ, . . . , cnθ, and known multipliers c1, . . . , cn. Identify a minimax solution

and show that it is the only one on board.

6. Computation of marginal distributions

Assume data y stem from a model density f(y | θ) and that there is a prior density π(θ)

for the model vector parameter. The marginal distribution of the data is then

f(y) =

∫
f(y | θ)π(θ) dθ.
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In many types of Bayesian analysis this marginal density is not really required, as analysis

is rather driven by the posterior distribution π(θ | y); cf. the recipes and illustrations above.

Calculation of f(y) is nevertheless of importance in some situations. It is inherently of

interest to understand the distribution of data under the assumptions of the model and the

prior (leading e.g. to positive correlations even when observations are independent given the

parameter); insights provided by such calculations may lead to new types of models; and

numerical values of f(y) are often needed when dealing with issues of different candidate

models (see the following exercise).

(a) Let y | θ be a binomial (n, θ), and assume θ ∼ Beta(kθ0, k(1− θ0)). Find the marginal

distribution of y, and, in particular, its mean and variance. Exhibit the ‘extra-binomial

variance’, i.e. the quantity with which the variance exceeds nθ0(1− θ0).

(b) Let y | θ be a N(θ, σ2), and let θ have the N(0, τ2) prior. Find the marginal distribution

of y.

(c) Now assume y1, . . . , yn given θ are i.i.d. from the N(θ, σ2) distribution, and let as

above θ ∼ N(0, τ2). Find the marginal distribution of the data vector. Show also that

corr(yi, yj) =
τ2

σ2 + τ2
,

so the data have positive correlations marginally even though they are independent

given the mean parameter. This is a typical phenomenon.

(d) Take y1, . . . , yn to be independent and Poisson θ for given mean parameter, and let

θ ∼ Gamma(a, b). Find an expression for the marginal density of a single yi, for a pair

(yi, yj), and for the full vector y1, . . . , yn. Find also the marginal means, variances

and covariances.

(e) We shall now develop a couple of numerical strategies for computing the actual value

of f(y); such will be useful in the model comparison settings below. We think of data

y as comprising n observations, and write ℓn(θ) = logLn(θ) for the log-likelihood

function. Letting θ̂ be the maximum likelihood estimate, with ℓn,max = ℓn(θ̂), verify

first that

f(y) = Ln(θ̂)

∫
exp{ℓn(θ)− ℓn(θ̂)}π(θ) dθ

.
= exp(ℓn,max)

∫
exp{− 1

2 (θ − θ̂)tĴ(θ − θ̂)}π(θ) dθ,

with Ĵ the Hessian matrix −∂2ℓn(θ̂)/∂θ∂θ
t, i.e. the observed information matrix.

Derive from this that

f(y) = Ln,maxRn, or log f(y) = ℓn,max + logRn,

where

Rn
.
= (2π)p/2|Ĵ |−1/2π(θ̂), or logRn

.
= − 1

2 log |Ĵ |+
1
2p log(2π) + log π(θ̂).
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(f) Discuss conditions under which the above Laplace type approximation may expect

to provide a good approximation, and when it does not. Consider then the case

of n independent observations we may typically write Ĵ = nJ∗
n, say, with J∗

n =

−n−1∂2ℓn(θ̂)/∂θ∂θ
t converging to a suitable matrix as sample size increases. Show

that

log f(y)
.
= ℓn,max −

1
2p log n− 1

2 log |J
∗
n|+

1
2p log(2π) + log π(θ̂)

.
= ℓn,max −

1
2p log n.

The latter is sometimes called ‘the BIC approximation’; see below. Note that it is

easy to compute and that it does not even involve the prior.

7. Model averaging and model probabilities

Assume that a data set y has been collected and that more than one parametric model

is being contemplated. The traditional statistical view may then be that one of these

is ‘correct’ (or ‘best’) and that the others are ‘wrong’ (or ‘worse’), with various model

selection strategies for finding the correct or best model (see e.g. Claeskens and Hjort,

Model Selection and Model Averaging, Cambridge University Press, 2008). Such problems

may also be tackled inside the Bayesian paradigm, if one is able to assign prior probabilities

for the models along with prior densities for the required parameter vector inside each

model.

Assume that the models under consideration are M1, . . . ,Mk, where model Mj holds

that y ∼ fj(y | θj), with θj belonging to parameter region Ωj ; note that y denotes the full

data set, e.g. of the type y1, . . . , yn, with or without regression covariates x1, . . . , xn, so

that fj denotes the full joint probability density of the data given the parameter vector.

Let furthermore πj(θj) be the prior for the parameter vector of model Mj , and, finally,

assume pj = Pr(Mj) is the probability assigned to model Mj before seeing any data.

(a) Show that the marginal distribution of y has density

f(y) = p1f1(y) + · · ·+ pkfk(y),

in terms of the marginal distributions inside each model,

fj(y) =

∫
fj(y | θj)πj(θj) dθj .

(b) Show also that the model probabilities p1, . . . , pk are changed to

p∗j = Pr(Mj | data) =
pjfj(y)

p1f1(y) + · · ·+ pkfk(y)
=

pjfj(y)

f(y)

when data have been observed.
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(c) Use the results above to deduce the following approximations to the posterior model

probabilities:

p∗j = Pr(Mj | data)
.
= pj exp{ℓn,j,max −

1
2pj log n− 1

2 log |J
∗
n,j |+

1
2pj log(2π) + log π(θ̂j)}/f(y)

.
= pj exp{ℓn,j,max −

1
2pj log n}/f(y),

in terms of maximum likelihood estimates θ̂j for the pj-dimensional model parameter

of model Mj , with associated log-likelihood maximum value ℓn,j,max. This is the

argument behind the so-called BIC, the Bayesian Information Criterion

BICj = 2ℓn,j,max − pj log n,

where the model with highest BIC value is declared the winner, in that it has the

highest posterior probability (to the order of approximation used).

(d) Sometimes the primary interest may be in learning which model is the most appro-

priate one, in which case the analysis above is pertinent. In other situations the focus

lies with a certain parameter, say µ, assumed to have a precise physical interpretation

so that it can be relevantly expressed in terms of θj of model Mj , for each of the

models considered. In that case one needs the posterior distribution of µ. Show that

this may be written

π(µ | data) = p∗1π1(µ | data) + · · ·+ p∗kπk(µ | data),

in terms of the posterior model probabilities already worked with and of the model-

conditional posterior densities πj(µ | data).

8. Life lengths in Roman era Egypt

Consider the data set consisting of n = 141 life lengths from Roman era Egypt, from

Claeskens and Hjort (2008), analysed using in Nils Exam stk 4020 2008.

(a) As in the Exam 2008 exercise, provide a Bayesian analysis, using a Weibull (a, b)

model, focussing on the median parameter µ – which under Weibull conditions is equal

to µ = a(log 2)1/b. Using the prior on (a, b) which is uniform over [10, 50]× [0.1, 3.0],

compute the posterior density of µ, via sampling say 105 values of (a, b) from the

posterior distribution. I find a 90% credibility interval of [22.852, 28.844], and posterior

median equal to 25.829.

(b) Similarly carry out a Bayesian analysis of the same data set but now employing the

Gamma (c, d) model, again focussing on the median, i.e. µ = qgamma(0.50, c, d) in R

notation. Use the prior for (c, d) which is uniform on [0.5, 2.5]×[0.01, 0.10]. Here I find

a 90% credibility interval of [21.817, 27.691], and posterior median equal to 24.628.
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Figure 2: Posterior density for the median life-length in Roman era Egypt, based
on respectively the Weibull model (full line) and the Gamma model (dotted line).
The posterior model probabilities are respectively 0.825 and 0.175.

(c) Display both posterior distributions (for the same median parameter µ, but computed

under respectively the Weibull and the Gamma model) in a diagram, using e.g. his-

tograms or kernel density estimation based on e.g. 105 simulations. See Figure 2.

These are π∗
1(µ | data) and π∗

2(µ | data) in the notation and vocabulary of Exercise

7(d).

(d) Finally compute the posterior model probabilities p∗1 and p∗2, for the Weibull and the

Gamma, using the priors indicated for (a, b) and (c, d). Assume equal probabilities

for these two models a priori. Note that these priors do not matter much for the

model-based posterior distributions of the median parameter (see Figure 2), but that

they do matter quite a bit for the precise computation of p∗1 and p∗2, via the terms

log π1(θ̂w) and log π2(θ̂g) in the formulae of Exercise 7(c). I find 0.825 and 0.175 for

these, with the given priors.

(e) Finally use the methods of Exercise 7(d) to compute and display the overall posterior

density of the median life-length, mixing properly over the two parametric models

used.

9. The multinormal distribution

‘Multivariate statistics’ is broadly speaking the area of statistical modelling and analysis

where data exhibit dependencies. The most important multivariate distribution is the
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multinormal one. We say that X = (X1, . . . , Xk)
t is multinormal with mean vector ξ (a

k-vector) and variance matrix Σ (a positive definite k × k matrix) if its density has the

form

f(x) = (2π)−k/2|Σ|−1/2 exp{− 1
2 (x− ξ)tΣ−1(x− ξ)} for x ∈ IRk.

We write X ∼ Nk(ξ,Σ) to indicate this. For dimension k = 1 this corresponds to the

traditional Gaußian N(ξ, σ2).

(a) Show that if X ∼ Nk(ξ,Σ) and A is k × k of full rank, and b a k-vector, then

Y = AX + b ∼ Nk(Aξ + b, AΣAt).

Generalise to the situation where A is of dimension m× k (rather than merely k× k).

(b) Show that if X ∼ Nk(ξ,Σ), then indeed

EX = ξ and VarX = Σ,

justifying the semantic terms used above.

(c) Show that X is multinormal if and only if all linear combinations are normal. In

particular, if X ∼ Nk(ξ,Σ), then atX = a1X1 + · · · + akXk is N(atξ, atΣa). – We

will also allow saying ‘X ∼ Nk(ξ,Σ)’ in cases where Σ has less than full rank. in

particular, a constant may be seen as a normal distribution with zero variance.

(d) An important property of the multinormal is that a subset of components, conditional

on another subset of components, remains multinormal. Show in fact that if

X =

(
X(1)

X(2)

)
∼ Nk1+k2

(

(
ξ(1)

ξ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

)
),

then

X(1) | {X(2) = x(2)} ∼ Nk1
(ξ(1) +Σ12Σ

−1
22 (x

(2) − ξ(2)),Σ11 − Σ12Σ
−1
22 Σ21).

(e) How tall is Professor Hjort? Assume that the heights of Norwegian men above the

age of twenty follows the normal distribution N(ξ, σ2), with ξ = 180 cm and σ = 9

cm. Thus, if you have not yet seen or bothered to notice this particular aspect of

Professor Hjort and his lectures, your point estimate of his height ought to be ξ = 180

and a 95% prediction interval for his height would be ξ ± 1.96σ, or [162.4, 197.6]. –

Assume now that you learn that his four brothers are actually 195 cm, 207 cm, 196

cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the

population of Norwegian men is equal to ρ = 0.80. Use this information about his four

brothers (still assuming that you have not noticed Professor Hjort’s height) to revise

your initial point estimate of Professor Hjort’s height. Is he a five-percent statistical

outlier in his family (i.e. outside the 95% prediction interval)?
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(f) Assume Professor Hjort has n brothers (rather than merely four) and that you’re

learning their heights X1, . . . , Xn. What is the conditional distribution of Professor

Hjort’s height X0, given this information? Represent this as a N(ξn, σ
2
n) distribution,

with proper formulae for its parameters. How small is σn for a large number of

brothers? (The point here is partly that even if you observe and measure my 99

brothers, there’s still a limit to how much you can infer about me.)

10. Simulating from the multinormal distribution

There are special routines that manage to simulate directly from the multinormal distri-

bution, as mvrnorm in R (preceded by library(MASS), if necessary). These sometimes do

not work well for high dimensions. At any rate it is useful to work out different simulation

strategies for the multinormal, also for use in Gaußian processes and Gaußian random

fields.

(a) Let Σ be a k × k positive definite symmetric matrix (which is equivalent to saying

that it is a covariance matrix, for a suitable k-dimensional probability distribution).

Let Σ1/2 be any matrix square root of Σ, i.e. a symmetric matrix with the property

that Σ1/2Σ1/2 = Σ (there may in general be several matrices with this property, see

the following point). Show that when U = (U1, . . . , Uk)
t is a vector of independent

standard normals, then

X = Σ1/2U ∼ Nk(0,Σ).

This is accordingly a general recipe for simulating from a multinormal vector, via

independent standard normals, provided one manages to compute the square root

matrix numerically.

(b) By a famous linear algebra theorem, there exist a unitary (or orthonormal) matrix P

(with the property that PP t = Ik = P tP , i.e. its transpose is its inverse) such that

PΣP t = Λ = diag(λ1, . . . , λk),

where the diagonal Λ matrix has the eigenvalues of Σ along its diagonal (in decreasing

order). The P matrix and the λ1, . . . , λk values are found numerically in R using the

eigen operation: use

lambda = eigen(Sigma, symmetric = T)$values,

P = t(eigen(Sigma, symmetric = T)$vectors),

and use these to define Λ. (The symmetric=T part is not really required, but helps

numerical stability for big matrices.) Then indeed the relations above hold, and these

imply Σ = P tΛP . Show that Σ1/2 = P tΛ1/2P is symmetric and does the job. Write

a few-lined R programme, say squareroot, which computes squareroot(Sigma) for

any given Sigma.
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11. The Ornstein–Uhlenbeck process
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Figure 3: Five simulated Ornstein–Uhlenbeck processes, with dependence param-
eter ρ = exp(−3.00) = 0.0498. The grid used for this figure has fineness 1/m with
m = 500.

Consider the so-called Ornstein–Uhlenbeck process Z = {Z(t): t ∈ [0, 1]} on the unit

interval. This is a zero-mean constant-variance Gaußian process with covariance function

cov{Z(s), Z(t)} = exp{−a|s− t|} = ρ|s−t|

for a suitable positive parameter a, dictating the degree of autocorrelation.

(a) Your task is now to simulate paths of such a process, say for a = 3.00 (which corre-

sponds to correlation ρ = exp(−a) = 0.0498 between pairs distance 1 apart); see Fig-

ure 3. Do this by (i) gridding the unit interval to 0/m, 1/m, . . . ,m/m; (ii) then build-

ing the appropriate Σ matrix of size (m+1)×(m+1) for Zgrid = {Z(i/m): 0 ≤ i ≤ m};

(iii) then simulating and plotting such Zgrid via the strategy outlined in Exercise 10.

(b) The simulation method used in (a) is ‘direct’ and ‘brute force’, involving the square-

rooting of a big matrix, and may be slow for a fine grid. Show now that the distribution

of Z(u) given Z(s) = x and Z(t) = y, where s < t < u are three time-points, in fact

does not depend on the Z(s) = x information, only on Z(t) = y. This indicates

that the Z process is Markovian. Explain how this gives rise to a different simulation

strategy, which is in effect much quicker and not hampered by eigen-operations of big

matrices.
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(c) Suppose one learns that Z(0) = 0.44, Z(1) = −0.11. Simulate realisations from the

Z process on the unit interval given this information. This may be accomplished

via ‘brute force’ application of the result about conditional multinormal distributions

given in Exercise 9(d). It is however instructive and useful to also characterise the

distribution of the tied-down Z process. Find in fact formulae for

ξ(t) = E{Z(t) |Z(0) = a, Z(1) = b}, K(s, t) = cov{Z(s), Z(t) |Z(0) = a, Z(1) = b}.

Check in particular ξ(t) and K(t, t) for t → 0 and t → 1.

(d) The Ornstein–Uhlenbeck process may be used as a ‘nonparametric prior’ for an un-

known function. Suppose for illustration that Z is such an unknown function on the

unit interval, that the prior used is a process of the above type, with a = 3.00, and

that Statoil with a few billion Euro has been able to observe that

Z(0) = 0.44, Z(0.20) = 0.88, Z(0.70) = −0.55, Z(1) = −0.11.

Simulate paths from the posterior distribution of the unknown curve. Use these to

compute the probability that the curve has a maximum exceeding 1.50 along with a

minimum below −1.50 (up to simulation accuracy). – It is again possible to carry

out these simulations ‘directly’, via the conditioning recipe of Exercise 9(d), but it is

more interesting and useful to work out proper characterisations of the conditional

Z process given its observed values in a finite number of points. In particular, show

that Z splits into independent parts over each of these intervals; it may accordingly

be simulated separately over intervals.

12. Alarm or not?

Suppose y is binomial (n, θ), that the action space is {alarm, no alarm}, and that the loss

function is as follows:

L(θ, no alarm) =

{
5000 if θ > 0.15,
0 if θ < 0.15,

,

L(θ, alarm) =

{
0 if θ > 0.15,
1000 if θ < 0.15,

.

Work out when the correct decision is ‘alarm’, in terms of the posterior distribution, having

started with a given prior p(θ). In particular, for n = 50, for which values of y should one

decide on ‘alarm’? Sort out this for each of the following priors for θ.

(a) θ is uniform on (0, 1).

(b) θ is a Beta (2, 8).

(c) θ is an even mixture of a Beta (2, 8) and a Beta (8, 2).

14



13. The Dirichlet-multinomial model

The Beta-binomial model, with a Beta distribution for the binomial probability parameter,

is on the ‘Nice List’ where the Bayesian machinery works particularly well: Prior elicitation

is easy, as is the updating mechanism. This exercise concerns the generalisation to the

Dirichlet-multinomial model, which is certainly also on the Nice List and indeed in broad

and frequent use for a number of statistical analyses.

(a) Let (y1, . . . , ym) be the count vector associated with n independent experiments having

m different outcomes A1, . . . , Am. In other words, yj is the number of events of type

Aj , for j = 1, . . . ,m. Show that if the vector of Pr(Aj) = pj is constant across the n

independent experiments, then the probability distribution governing the count data

is

f(y1, . . . , ym) =
n!

y1! · · · ym!
py1

1 · · · pym

m

for y1 ≥ 0, . . . , ym ≥ 0, y1 + · · · + ym = n. This is the multinomial model. Explain

how it generalises the binomial model.

(b) Show that

EYj = npj , VarYj = npj(1− pj), cov(Yj , Yk) = −npjpk for j 6= k.

(c) Now define the Dirichlet distribution over m cells with parameters (a1, . . . , am) as

having probability density

π(p1, . . . , pm−1) =
Γ(a1 + · · ·+ am)

Γ(a1) · · ·Γ(am)
pa1−1
1 · · · p

am−1−1
m−1 (1− p1 − · · · − pm−1)

am−1,

over the simplex where each pj ≥ 0 and p1+ · · ·+pm−1 ≤ 1. Of course we may choose

to write this as

π(p1, . . . , pm−1) ∝ pa1−1
1 · · · p

am−1−1
m−1 pam

m ,

with pm = 1−p1−· · ·−pm−1; the point is however that there are only m−1 unknown

parameters in the model as one knows the mth once one learns the values of the other

m− 1. Show that the marginals are Beta distributed,

pj ∼ Beta(aj , a− aj) where a = a1 + · · ·+ am.

(d) Infer from this that

E pj = p0,j and Var pj =
1

a+ 1
p0,j(1− p0,j),

in terms of aj = ap0,j . Show also that

cov(pj , pk) = −
1

a+ 1
p0,jp0,k for j 6= k.
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For the ‘flat Dirichlet’, with parameters (1, . . . , 1) and prior density (m− 1)! over the

simplex, find the means, variances, covariances.

(e) Now for the basic Bayesian updating result. When (p1, . . . , pm) has a Dir(a1, . . . , am)

prior, then, given the multinomial data, show that

(p1, . . . , pm) | data ∼ Dir(a1 + y1, . . . , am + ym).

Give formulae for the posterior means, variances, and covariances. In particular,

explain why

p̂j =
aj + yj
a+ n

is a natural Bayes estimate of the unknown pj . Also find an expression for the posterior

standard deviation of the pj .

(f) In order to carry out easy and flexible Bayesian inference for p1, . . . , pm given observed

counts y1, . . . , ym, one needs a recipe for simulating from the Dirichlet distribution.

One such is as follows: Let X1, . . . , Xm be independent with Xj ∼ Gamma(aj , 1) for

j = 1, . . . ,m. Then the ratios

Z1 =
X1

X1 + · · ·+Xm
, . . . , Zm =

X1

X1 + · · ·+Xm

are in fact Dir(a1, . . . , am). Try to show this from the transformation law for probabil-

ity distributions: If X has density f(x), and Z = h(X) is a one-to-one transformation

with inverse X = h−1(Z), then the density of Z is

g(z) = f(h−1(z))
∣∣∣∂h

−1(z)

∂z

∣∣∣

(featuring the determinant of the Jacobian of the transformation). Use in fact this

theorem to find the joint distribution of (Z1, . . . , Zm−1, S), where S = Z1 + · · ·+ Zm

(one discovers that the Dirichlet vector of Zj is independent of their sum S).

(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (p1, . . . , p8) is

Dir(a1, . . . , a8), show that then the collapsed vector (p1 + p2, p3 + p4 + p5, p6, p7 + p8)

is Dir(a1 + a2, a3 + a4 + a5, a6, a7 + a8).

14. Gott würfelt nicht

but I do so, on demand. I throw a certain moderately strange-looking die 30 times and

have counts (2, 5, 3, 7, 5, 8) of outcomes 1, 2, 3, 4, 5, 6. Use either of the priors

. ‘flat’, Dir(1, 1, 1, 1, 1, 1),

. ‘symmetric but more confident’, Dir(3, 3, 3, 3, 3, 3),

. ‘unwilling to guess’, Dir(0.1, 0.1, 0.1, 0.1, 0.1, 0.1)
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for the probabilities (p1, . . . , p6) to assess the posterior distribution of each of the following

quantities:
ρ = p6/p1,

α = (1/6)
6∑

j=1

(pj − 1/6)2,

β = (1/6)

6∑

j=1

|pj − 1/6|,

γ = (p4p5p6)
1/3/(p1p2p3)

1/3.
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