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1. Prior to posterior updating with Poisson data
This exercise illustrates the basic prior to posterior updating mechanism for Poisson data.

(a) First make sure that you are reasonably acquainted with the Gamma distribution.
We say that Z ~ Gammal(a, b) if its density is

ba
g(z) = T 2 Lexp(—bz) on (0,00).
Here a and b are positive parameters. Show that
EZ
EZ:% and VarZ:l%:T.

In particular, low and high values of b signify high and low variability, respectively.
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Figure 1: Eleven curves are displayed, corresponding to the Gamma(0.1,0.1) intial
prior density for the Poisson parameter 6 along with the ten updates following
each of the observations 6, 8, 7, 6, 7, 4, 11, 8, 6, 3.



(b) Now suppose y | 6 is a Poisson with parameter 8, and that 6 has the prior distribution
Gamma(a, b). Show that 6 |y ~ Gamma(a + y,b+ 1).

(c) Then suppose there are repeated Poisson observations y1, .. ., yn, being i.i.d. ~ Pois(#)
for given 6. Use the above result repeatedly, e.g. interpreting p(6 | y1) as the new prior
before observing s, etc., to show that

Olyi,-.  yn ~ Gamma(a +y; + -+ Yn, b+ n).

Also derive this result directly, i.e. without necessarily thinking about the data having
emerged sequentially.

(d) Suppose the prior used is a rather flat Gamma(0.1,0.1) and that the Poisson data
are 6, 8, 7, 6, 7, 4, 11, 8, 6, 3. Reconstruct a version of Figure 1 in your computer,
plotting the ten curves p(6|data;), where data; is yi,...,y;, along with the prior
density. Also compute the ten Bayes estimates 5] = E(f|data;) and the posterior
standard deviations, for j =0, ..., 10.

(e) The mathematics turned out to be rather uncomplicated in this situation, since the
Gamma continuous density matches the Poisson discrete density so nicely. Suppose
instead that the initial prior for € is a uniform over [0.5,50]. Try to compute posterior
distributions, Bayes estimates and posterior standard deviations also in this case, and
compare with you found above.

2. The Master Recipe for finding the Bayes solution

Consider a general framework with data y, in a suitable sample space ); having likelihood
p(y | @) for given parameter # (stemming from an appropriate parametric model), with 6
being inside a parameter space 2; and with loss function L(6,a) associate with decision
or action a if the true parameter value is 6, with a belonging to a suitable action space
A. This could be the real line, if a parameter space is called for; or a two-valued set
{reject, accept} if a hypothesis test is being carried out; or the set of all intervals, if the
statistician needs a confidence interval.

A statistical decision function, or procedure, is a function a: ) — A, getting from data y
the decision a(y). Its risk function is the expected loss, as a function of the parameter:

R(@,6) = EL(6,3) = [ L(O.a))p(y|0) d

(In particular, in this expectation operation the random element is y, having its p(y | @)
distribution for given parameter, and the integration range is that of the sample space ).)

So far the framework does not include Bayesian components per se, and is indeed a useful
one for frequentist statistics, where risk functions for different decision functions (be they
estimators, or tests, or confidence intervals, depending on the action space and the loss
function) may be compared.



We are now adding one more component to the framework, however, which is that of a
prior distribution p(f) for the parameter. The overall risk, or Bayes risk, associated with
a decision function @, is then the overall expected loss, i.e.

BR(d,p) — E R(@,0) / R(@,0)p(0) do.

(Here 6 is the random quantity, having its prior distribution, making also the risk function
R(a,0) random.) The minimum Bayes risk is the smallest possible Bayes risk, i.e.

MBR(p) = min{BR(a, p): all decision functions a}.

The Bayes solution for the problem is the strategy or decision function ap that succeeds

in minimising the Bayes risk, with the given prior, i.e.

MBR(p) = BR(az, p).

The Master Theorem about Bayes procedures is that there is actually a recipe for finding
the optimal Bayes solution ap(y), for the given data y (even without taking into account
other values 3 that could have been observed).

(a) Show that the posterior density of 6, i.e. the distribution of the parameter given the
data, takes the form

p(01y) = k(y) 'p(O)p(y|0),

where k(y) is the required integration constant [ p(6)p(y|6)d6. This is the Bayes
theorem.

(b) Show also that the marginal distribution of y becomes

p(y) = / p(y | 0)p(6) db.

(I follow the GCSR book’s convention regarding using the ‘p’ multipurposedly.)

(c) Show that the overall risk may be expressed as
BR(a,p) =EL(#,a(Y))
=EE{L(#,a(Y))|Y}
— [{] L@.a)w015) a6} 1) .

The inner integral, or ‘inner expectation’, is E{L(0,a(y)) |y}, the expected loss given
data.



(d) Show then that the optimal Bayes strategy, i.e. minimising the Bayes risk, is achieved
by using

ap(y) = argming = the value ap minimising the function g,
where g = g(a) is the expected posterior loss,

g(a) = E{L(0,a)[y}.

The ¢ function is evaluated and mininised over all a, for the given data y. This is the
Bayes recipe. — For examples and illustrations, with different loss functions, see the Nils
2008 Exercises.

3. Minimax estimators

For a decision function @, bringing data y into a decision a(y), its max-risk is
Riax(a) = max R(a,0).
We say that a procedure a* is minimaz if it minimises the max-risk, i.e.
Riax(a”) < Rpax(a) for all competitors a.

Here I give recipes (that often but not always work) for finding minimax strategies.

(a) For any prior p and strategy a, show that

MBR(p) < Rmax(a).

(b) Assume a* is such that there is actually equality in (a), for a suitable prior p. Show

that a¢* is then minimax.

(c) Assume more generally that a* is such that MBR(p,,) — Rmax(a*), for a suitable

sequence of priors p,,. Show that a* is indeed minimax.

We note that minimax strategies often but not always have constant risk functions, and
that they need not be unique — different minimax strategies for the same problem need to
have identical max-risks, but the risk functions themselves need not be identical.

4. Minimax estimation of a normal mean [cf. Nils 2008 #3, 6, 9]

A prototype normal mean model is the simple one with a single observation y ~ N(6,1).
We let the loss function be squared error, L(6,a) = (a — 6)2.
(a) Show that the maximum likelihood (ML) solution is simply 0* = y. Show that its risk

function is R(6*,0) = 1, i.e. constant.

(b) Let 6 have the prior N(0,72). Show that (6,y) is binormal, and that 6|y ~ N(py, p),
with p = 72/(72 4+ 1). In particular, 0 (y) = py is the Bayes estimator.
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(c)

(d)

(e)

(f)

Find the risk function for the Bayes estimator, and identify where it is smaller than
that of the ML solution, and where it is larger. Comment on the situation where 7 is
small (and hence p), as well as on the case of 7 being big (and hence p close to 1).

Show that MBR(N(0,72)) = p = 72/(7? + 1). Use the technique surveyed above to
show that y is indeed minimax.

This final point is to exhibit a technique for demonstrating, in this particular situation,
that y is not only minimax, but the only minimax solution — this was given as Exercise
#9(e) in the Nils 2008 collection, but without any hints. Assume that there is a
competitor 0 that is different from y and also a minimax estimator. Then, since risk
functions are continuous (show this), there must be a positive € and a non-empty
interval [c, d] with

~ 1—¢ onled]
< ) 9
R(6,0) < { 1 everywhere.

Deduce from this that

.MmMNwm»>SBR@m»f;/

(=@ o+ [ 1ep(o)as,
[e,d]

elsewhere
writing p, for the N(0, 72) prior. This leads to

1
241

1
5(27r)—1/2—/ exp(—360?/7%)df < 1 - MBR(p,) =
[e.d]

T

Show that this leads to a contradiction: hence y is the single minimax estimator in
this problem.

Generalise the above to the situation with yy,...,y, ~ N(0,0?).

5. Minimax estimation of a Poisson mean [cf. Nils 2008 #12]

Let y| 60 be a Poisson with mean parameter ¢, which is is to be estimated with weighted
squared error loss L(0,t) = (t — 0)%/6. This case was treated in Nils 2008 #12, but here I
add more, to take care of the more difficult admissibility point #12(g), where the task is

to show that y is the only minimax estimator.

(a)

(b)

()

Show that the maximum likelihood (ML) estimator is y itself, and that its risk function
is the constant 1.

Consider the prior distribution Gamma(a,b) for . Show that E6 = a/b and that
E6~! =b/(a—1) if a > 1, and infinite if a < 1.
Show that 0|y is a Gamma(a + y, b + 1), from which follows

a+y b+1
b+1 a—1+y
The latter formula holds if a — 1 4+ y > 0, which means for all y if a > 1, but care is

E(f]y) = and B0~ [y) =

needed if @ < 1 and y = 0. Show that the Bayes solution is

~ a-1
HZGT—Iy for all y > 0,



provided a > 1, but that we need the more careful formula
7 (a—1+y)/(b+1) ify>1,
0 ify =0,
in the case of a < 1.
(d) Taking care of the simplest case a > 1 first, show that

1

MBR(pa,b) = b+—1’

writing p, , for the Gamma prior (a,b). This is enough to demonstrate that y is indeed
minimax, cf. the Nils 2008 #12 Exercise.

(e) Attempt to show that y is the only minimax estimator via the technique of the previous
exercise, starting with a competitor 6 with risk function always bounded by 1 and
bounded by say 1 — & on some non-empty parameter interval [c,d]. Show that this
leads to

5/[ ]pa7b(9) deo <1- MBR(p[a’b]).
c,d

For the easier case of a > 1, this gives a simple right hand side, but, perhaps irri-
tatingly, not a contradiction — one does not yet know, despite certain valid and bold
mathematical efforts, whether y is the unique minimax method or not.

(f) Since the previous attempt ended with ‘epic fail’; we need to try out the more difficult
case a < 1 too. Show that

s - {01 112

Deduce from this a minimum Bayes risk formula also for the case of a < 1:

MBR@@wzzgii{l—(K%Ty?-+bil(géi>?

(g) Find a sufficiently clever sequence of Gamma priors (G, by, ), with a,, — 1 from the

left and b,, — 0 from the right, that succeeds in squeezing a contradiction out of

equality in point(e). Conclude that y is not only minimax, but the only minimax

strategy.
(h) Generalise these results to the situation where y1,...,y, are independent and Poisson
with rates c10,...,c,0, and known multipliers ¢y, ..., c,. Identify a minimax solution

and show that it is the only one on board.

6. Computation of marginal distributions

Assume data y stem from a model density f(y|#) and that there is a prior density 7(0)
for the model vector parameter. The marginal distribution of the data is then

ﬂmZ/j@wwwma
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In many types of Bayesian analysis this marginal density is not really required, as analysis

is rather driven by the posterior distribution 7(6 |y); cf. the recipes and illustrations above.

Calculation of f(y) is nevertheless of importance in some situations. It is inherently of

interest to understand the distribution of data under the assumptions of the model and the

prior (leading e.g. to positive correlations even when observations are independent given the

parameter); insights provided by such calculations may lead to new types of models; and

numerical values of f(y) are often needed when dealing with issues of different candidate

models (see the following exercise).

(a)

(b)

Let y |0 be a binomial (n,8), and assume 6 ~ Beta(kfy, k(1 —6p)). Find the marginal
distribution of y, and, in particular, its mean and variance. Exhibit the ‘extra-binomial
variance’, i.e. the quantity with which the variance exceeds nfy(1 — 6y).

Let y |0 be a N(6, 02), and let 6 have the N(0, 72) prior. Find the marginal distribution
of y.

Now assume yi,...,y, given @ are i.i.d. from the N(6,0?) distribution, and let as
above 8 ~ N(0,72). Find the marginal distribution of the data vector. Show also that

7_2

corr(ys, y;) = o2 1 72

so the data have positive correlations marginally even though they are independent
given the mean parameter. This is a typical phenomenon.

Take y1,...,y, to be independent and Poisson 6 for given mean parameter, and let
0 ~ Gamma(a,b). Find an expression for the marginal density of a single y;, for a pair
(vi,y;), and for the full vector y1,...,y,. Find also the marginal means, variances
and covariances.

We shall now develop a couple of numerical strategies for computing the actual value
of f(y); such will be useful in the model comparison settings below. We think of data
y as comprising n observations, and write ¢, (0) = log L, (6) for the log-likelihood
function. Letting 0 be the maximum likelihood estimate, with ¢, max = En(é\), verify
first that

~

£0) = Lo(8) [ exp{ta(6) = £2@)}n(6) a0
= expllnmne) [ exp(~(6 - 8)'T(6 ~ B)}r(6) o,

with J the Hessian matrix —82€n(§) /0000, i.e. the observed information matrix.
Derive from this that

f(y) = Ly maxfn, or log f(y) = En,max +log Ry,
where
R, = 2m)P2|J|"2x(8), or logR, = —1log|J| + iplog(2n) + log n(8).
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(f) Discuss conditions under which the above Laplace type approximation may expect
to provide a good approximation, and when it does not. Consider then the case
of n independent observations we may typically write J = nJ), say, with J; =
—n=19%0,(6)/8090" converging to a suitable matrix as sample size increases. Show
that R

10g f(y) = lnmax — zplogn — 3 log|J;| + 5plog(2m) + log m(0)
= U max — %p log n.

The latter is sometimes called ‘the BIC approximation’; see below. Note that it is
easy to compute and that it does not even involve the prior.

7. Model averaging and model probabilities

Assume that a data set y has been collected and that more than one parametric model
is being contemplated. The traditional statistical view may then be that one of these
is ‘correct’ (or ‘best’) and that the others are ‘wrong’ (or ‘worse’), with various model
selection strategies for finding the correct or best model (see e.g. Claeskens and Hjort,
Model Selection and Model Averaging, Cambridge University Press, 2008). Such problems
may also be tackled inside the Bayesian paradigm, if one is able to assign prior probabilities
for the models along with prior densities for the required parameter vector inside each
model.

Assume that the models under consideration are My, ..., M}, where model M; holds
that y ~ f;(y|6,), with 6; belonging to parameter region €2;; note that y denotes the full
data set, e.g. of the type y1,...,¥y,, with or without regression covariates x1,...,x,, so
that f; denotes the full joint probability density of the data given the parameter vector.
Let furthermore 7;(6;) be the prior for the parameter vector of model M}, and, finally,

assume p; = Pr(M;) is the probability assigned to model M; before seeing any data.

(a) Show that the marginal distribution of y has density

fly)=pifily) + - +prfr(y),

in terms of the marginal distributions inside each model,
fily) = /fj(y 0;)m;(6;) db;.

(b) Show also that the model probabilities p, ..., px are changed to

“ — Pr(M. | data) — p;fi(y) _ pifi(y)
Py = P data) = R 1)

when data have been observed.



(c)

Use the results above to deduce the following approximations to the posterior model
probabilities:

p; = Pr(M; |data)
= bj eXp{en,j,max - %pj logn - % log |J1>;,]| + %pj 10g(27‘(‘) + logﬂ-(ej)}/f(y)
= pj exp{ln jmax — 3p;logn}/f(y),

in terms of maximum likelihood estimates @ for the p;-dimensional model parameter
of model M;, with associated log-likelihood maximum value ¢, jmax. This is the
argument behind the so-called BIC, the Bayesian Information Criterion

BIC] = 2£n7]~,max — pj log n,

where the model with highest BIC value is declared the winner, in that it has the
highest posterior probability (to the order of approximation used).

Sometimes the primary interest may be in learning which model is the most appro-
priate one, in which case the analysis above is pertinent. In other situations the focus
lies with a certain parameter, say i, assumed to have a precise physical interpretation
so that it can be relevantly expressed in terms of 6; of model M;, for each of the
models considered. In that case one needs the posterior distribution of p. Show that
this may be written

m(p | data) = pymi (| data) + - - + prme(p | data),

in terms of the posterior model probabilities already worked with and of the model-
conditional posterior densities 7;(u | data).

8. Life lengths in Roman era Egypt

Consider the data set consisting of n = 141 life lengths from Roman era Egypt, from
Claeskens and Hjort (2008), analysed using in Nils Exam stk 4020 2008.

(a)

As in the Exam 2008 exercise, provide a Bayesian analysis, using a Weibull (a,b)
model, focussing on the median parameter © — which under Weibull conditions is equal
to u = a(log2)'/’. Using the prior on (a,b) which is uniform over [10,50] x [0.1, 3.0],
compute the posterior density of y, via sampling say 10° values of (a,b) from the
posterior distribution. I find a 90% credibility interval of [22.852, 28.844], and posterior
median equal to 25.829.

Similarly carry out a Bayesian analysis of the same data set but now employing the
Gamma (c,d) model, again focussing on the median, i.e. 4 = qgamma(0.50, c,d) in R
notation. Use the prior for (¢, d) which is uniform on [0.5,2.5] x [0.01,0.10]. Here I find
a 90% credibility interval of [21.817,27.691], and posterior median equal to 24.628.
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Figure 2: Posterior density for the median life-length in Roman era Egypt, based
on respectively the Weibull model (full line) and the Gamma model (dotted line).
The posterior model probabilities are respectively 0.825 and 0.175.

(c) Display both posterior distributions (for the same median parameter p, but computed
under respectively the Weibull and the Gamma model) in a diagram, using e.g. his-
tograms or kernel density estimation based on e.g. 10° simulations. See Figure 2.
These are 77 (u|data) and 75 (u|data) in the notation and vocabulary of Exercise
7(d).

(d) Finally compute the posterior model probabilities pi and p3, for the Weibull and the
Gamma, using the priors indicated for (a,b) and (c¢,d). Assume equal probabilities
for these two models a priori. Note that these priors do not matter much for the
model-based posterior distributions of the median parameter (see Figure 2), but that
they do matter quite a bit for the precise computation of pj and p3, via the terms
log 771(@1,) and log Fz(é\g) in the formulae of Exercise 7(c). I find 0.825 and 0.175 for
these, with the given priors.

(e) Finally use the methods of Exercise 7(d) to compute and display the overall posterior
density of the median life-length, mixing properly over the two parametric models
used.

9. The multinormal distribution

‘Multivariate statistics’ is broadly speaking the area of statistical modelling and analysis
where data exhibit dependencies. The most important multivariate distribution is the

10



multinormal one. We say that X = (X3,..., X})" is multinormal with mean vector ¢ (a
k-vector) and variance matrix ¥ (a positive definite k£ x k matrix) if its density has the
form

flz) = @2m) 2187 2 exp{—4(z — 'Sz — &)} for x € R*.
We write X ~ Ng(§,3) to indicate this. For dimension k = 1 this corresponds to the
traditional GauBian N(&, 02).
(a) Show that if X ~ Ng(£,%) and A is k x k of full rank, and b a k-vector, then

Y = AX + b~ Ni(AE +b, AV AY).

Generalise to the situation where A is of dimension m x k (rather than merely k x k).

(b) Show that if X ~ N (&, ), then indeed
EX=¢ and VarX =3,

justifying the semantic terms used above.

(c) Show that X is multinormal if and only if all linear combinations are normal. In
particular, if X ~ Ng(£, ), then a*X = a1 X1 + -+ + ar Xy is N(a*¢,a'Sa). — We
will also allow saying ‘X ~ Ng(&,%) in cases where 3 has less than full rank. in

particular, a constant may be seen as a normal distribution with zero variance.

d) An important property of the multinormal is that a subset of components, conditional
y
on another subset of components, remains multinormal. Show in fact that if

X ¢ Y11 X2
X = (X(2)> NNk1+k2((£(2)> ; (221 222))7
then

XD HX® =@} ~ Ny, (W 4+ 21285, (2@ — €3)) 511 — 515585, 51).

(e) How tall is Professor Hjort? Assume that the heights of Norwegian men above the
age of twenty follows the normal distribution N(&,0?), with € = 180 cm and o = 9
cm. Thus, if you have not yet seen or bothered to notice this particular aspect of
Professor Hjort and his lectures, your point estimate of his height ought to be & = 180
and a 95% prediction interval for his height would be £ + 1.96 o, or [162.4,197.6]. —
Assume now that you learn that his four brothers are actually 195 cm, 207 cm, 196
cm, 200 cm tall, and furthermore that correlations between brothers’ heights in the
population of Norwegian men is equal to p = 0.80. Use this information about his four
brothers (still assuming that you have not noticed Professor Hjort’s height) to revise
your initial point estimate of Professor Hjort’s height. Is he a five-percent statistical
outlier in his family (i.e. outside the 95% prediction interval)?

11



(f)

Assume Professor Hjort has n brothers (rather than merely four) and that you're
learning their heights Xi,..., X,,. What is the conditional distribution of Professor
Hjort’s height X, given this information? Represent this as a N(&,,02) distribution,
with proper formulae for its parameters. How small is o, for a large number of
brothers? (The point here is partly that even if you observe and measure my 99
brothers, there’s still a limit to how much you can infer about me.)

10. Simulating from the multinormal distribution

There are special routines that manage to simulate directly from the multinormal distri-

bution, as mvrnorm in R (preceded by library (MASS), if necessary). These sometimes do

not work well for high dimensions. At any rate it is useful to work out different simulation

strategies for the multinormal, also for use in Gauflian processes and Gauflian random
fields.

(a)

Let ¥ be a k x k positive definite symmetric matrix (which is equivalent to saying
that it is a covariance matrix, for a suitable k-dimensional probability distribution).
Let ¥'/2 be any matrix square root of ¥, i.e. a symmetric matrix with the property
that X1/2%.1/2 = 3 (there may in general be several matrices with this property, see
the following point). Show that when U = (Uy,...,U;)" is a vector of independent
standard normals, then

X =220 ~ Ni(0,%).

This is accordingly a general recipe for simulating from a multinormal vector, via
independent standard normals, provided one manages to compute the square root

matrix numerically.

By a famous linear algebra theorem, there exist a unitary (or orthonormal) matrix P
(with the property that PP* = I}, = P'P, i.e. its transpose is its inverse) such that

PYP' = A =diag(A1, ..., ),

where the diagonal A matrix has the eigenvalues of ¥ along its diagonal (in decreasing
order). The P matrix and the Ay, ..., Ay values are found numerically in R using the

eigen operation: use

lambda = eigen(Sigma, symmetric = T)$values,

P = t(eigen(Sigma, symmetric = T)$vectors),

and use these to define A. (The symmetric=T part is not really required, but helps
numerical stability for big matrices.) Then indeed the relations above hold, and these
imply ¥ = P*AP. Show that ¥'/2 = P*AY/2P is symmetric and does the job. Write
a few-lined R programme, say squareroot, which computes squareroot (Sigma) for

any given Sigma.

12



Ornstein-Uhlenbeck processes

11. The Ornstein—Uhlenbeck process

0.0 0.2 0.4 0.6 0.8 1.0

time

Figure 3: Five simulated Ornstein—Uhlenbeck processes, with dependence param-
eter p = exp(—3.00) = 0.0498. The grid used for this figure has fineness 1/m with
m = 500.

Consider the so-called Ornstein—Uhlenbeck process Z = {Z(t):t € [0,1]} on the unit
interval. This is a zero-mean constant-variance Gauflian process with covariance function

cov{Z(s), Z(t)} = exp{—al|s — t|} = pl*~

for a suitable positive parameter a, dictating the degree of autocorrelation.

(a)

Your task is now to simulate paths of such a process, say for a = 3.00 (which corre-
sponds to correlation p = exp(—a) = 0.0498 between pairs distance 1 apart); see Fig-
ure 3. Do this by (i) gridding the unit interval to 0/m, 1/m, ..., m/m; (ii) then build-
ing the appropriate ¥ matrix of size (m+1) x (m+1) for Zgyiqg = {Z(i/m):0 <1i < m};
(iii) then simulating and plotting such Zgq via the strategy outlined in Exercise 10.
The simulation method used in (a) is ‘direct’ and ‘brute force’, involving the square-
rooting of a big matrix, and may be slow for a fine grid. Show now that the distribution
of Z(u) given Z(s) = x and Z(t) = y, where s < t < u are three time-points, in fact
does not depend on the Z(s) = x information, only on Z(¢) = y. This indicates
that the Z process is Markovian. Explain how this gives rise to a different simulation
strategy, which is in effect much quicker and not hampered by eigen-operations of big
matrices.
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(c) Suppose one learns that Z(0) = 0.44, Z(1) = —0.11. Simulate realisations from the
Z process on the unit interval given this information. This may be accomplished
via ‘brute force’ application of the result about conditional multinormal distributions
given in Exercise 9(d). It is however instructive and useful to also characterise the
distribution of the tied-down Z process. Find in fact formulae for

E)=E{Z(t)|Z(0)=a,Z(1) =b}, K(s,t)=cov{Z(s),Z(t)|Z(0)=a,Z(1)=0b}.

Check in particular £(¢) and K (¢,t) for t — 0 and ¢t — 1.

(d) The Ornstein—Uhlenbeck process may be used as a ‘nonparametric prior’ for an un-
known function. Suppose for illustration that Z is such an unknown function on the
unit interval, that the prior used is a process of the above type, with a = 3.00, and
that Statoil with a few billion Euro has been able to observe that

Z(0) = 0.44, Z(0.20) = 0.88, Z(0.70) = —0.55, Z(1) = —0.11.

Simulate paths from the posterior distribution of the unknown curve. Use these to
compute the probability that the curve has a maximum exceeding 1.50 along with a
minimum below —1.50 (up to simulation accuracy). — It is again possible to carry
out these simulations ‘directly’, via the conditioning recipe of Exercise 9(d), but it is
more interesting and useful to work out proper characterisations of the conditional
Z process given its observed values in a finite number of points. In particular, show
that Z splits into independent parts over each of these intervals; it may accordingly
be simulated separately over intervals.

12. Alarm or not?

Suppose y is binomial (n,#), that the action space is {alarm, no alarm}, and that the loss

function is as follows:

5000 if 6 > 0.15,
0 if 9 < 0.15, °

0 if > 0.15,
1000 if 6 < 0.15,

L(6,no alarm) = {

L(0, alarm) = {

Work out when the correct decision is ‘alarm’, in terms of the posterior distribution, having
started with a given prior p(6). In particular, for n = 50, for which values of y should one
decide on ‘alarm’? Sort out this for each of the following priors for 6.

(a) € is uniform on (0,1).
(b) 6 is a Beta (2,8).
(c) € is an even mixture of a Beta (2,8) and a Beta (8, 2).
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13. The Dirichlet-multinomial model

The Beta-binomial model, with a Beta distribution for the binomial probability parameter,

is on the ‘Nice List” where the Bayesian machinery works particularly well: Prior elicitation

is easy, as is the updating mechanism. This exercise concerns the generalisation to the

Dirichlet-multinomial model, which is certainly also on the Nice List and indeed in broad

and frequent use for a number of statistical analyses.

(a)

Let (y1, ..., ym) be the count vector associated with n independent experiments having
m different outcomes Aq,..., A,,. In other words, y; is the number of events of type
Aj, for j =1,...,m. Show that if the vector of Pr(4;) = p; is constant across the n
independent experiments, then the probability distribution governing the count data
is ol

o ym) = mpi“ ey
fory1 > 0,...,9m > 0,y1 + -+ + Yy, = n. This is the multinomial model. Explain

how it generalises the binomial model.

Show that
EY,; =np;, VarY; =np;(1—p;), cov(Y;,Yy)=—np;p; for j #k.

Now define the Dirichlet distribution over m cells with parameters (aq,...,a,) as
having probability density

F(al + -+ am)pal—l . _pam_l—l
P(a1)-- T(am) ™ mt

(I=p1 = = pm-1)™ "

7T(pla"'aprn—l): )
over the simplex where each p; > 0 and py +- - - +pp—1 < 1. Of course we may choose
to write this as

am—1—1 Qo

W(pla"'apm—l)ocpclll_l"'pmfl Pm

with p,, = 1—p1—+ -+ —pm_1; the point is however that there are only m —1 unknown
parameters in the model as one knows the mth once one learns the values of the other
m — 1. Show that the marginals are Beta distributed,

pj ~ Beta(aj, a — CL]') where a = a1+ -+ am,.
Infer from this that

1
Epj =po; and Varp; = mpo,j(l _p07j)7

in terms of a; = apo ;. Show also that

1
a+1

cov(pj, pr) = — Po,;po,r  for j # k.
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For the ‘flat Dirichlet’, with parameters (1,...,1) and prior density (m — 1)! over the

simplex, find the means, variances, covariances.

(e) Now for the basic Bayesian updating result. When (p1,...,p,,) has a Dir(ay,...,am)
prior, then, given the multinomial data, show that

(p1,-..,pm)|data ~ Dir(a1 +y1,. ., Gm + Ym)-

Give formulae for the posterior means, variances, and covariances. In particular,
explain why
~ a; +y;
P = J j
a+n
is a natural Bayes estimate of the unknown p;. Also find an expression for the posterior
standard deviation of the p;.

(f) In order to carry out easy and flexible Bayesian inference for p1, ..., p,, given observed
counts 1, ..., Ym, one needs a recipe for simulating from the Dirichlet distribution.
One such is as follows: Let X1,..., X,, be independent with X; ~ Gamma(a;, 1) for
7 =1,...,m. Then the ratios

X1 Xq

= ey Dy =
X1+ + X Xi1+--+ X

A

are in fact Dir(ay, ..., a;,). Try to show this from the transformation law for probabil-
ity distributions: If X has density f(z), and Z = h(X) is a one-to-one transformation
with inverse X = h™1(Z), then the density of Z is

o) = F(h (2| 2]

(featuring the determinant of the Jacobian of the transformation). Use in fact this
theorem to find the joint distribution of (Zy,...,Z,,-1,95), where S =21 +---+ Z,,
(one discovers that the Dirichlet vector of Z; is independent of their sum 5).

(g) The Dirichlet distribution has a nice ‘collapsibility’ property: If say (pi1,...,ps) is
Dir(aq,...,as), show that then the collapsed vector (p1 + p2, ps + p4 + ps, D6, P7 + Ps)
is Dir(a; + a2, a3 + a4 + as, ag, a7 + as).

14. Gott wirfelt nicht

but I do so, on demand. I throw a certain moderately strange-looking die 30 times and
have counts (2,5,3,7,5,8) of outcomes 1, 2, 3, 4, 5, 6. Use either of the priors

. ‘flat’, Dir(1,1,1,1,1,1),

. ‘symmetric but more confident’, Dir(3, 3,3, 3, 3, 3),

. ‘unwilling to guess’, Dir(0.1,0.1,0.1,0.1,0.1,0.1)
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for the probabilities (p1,. .., pe) to assess the posterior distribution of each of the following

quantities:

P =p6/p1,
a= (1/6>Z<pj ~1/6)?,
B=(1/6))_Ip; —1/6],

v = (papsps) 3/ (p1paps) /3.

15. Rejection-acceptance sampling

This exercise provides the basics of the so-called rejection-acceptance sampling strategy. It

it presented and exemplified here in the general framework of random variables on certain

sample spaces, but applies for this course particularly fruitfully in situations where the

target density is the posterior distribution (say (6 | data), rather than the generic density

f(z) used in this particular exercise).

(a)

Let Y come from some density g(y), and assume that we choose to keep the Y with
probability h(y); otherwise we throw it away and go on to the next round. Show that
an accepted Y then follows the density

(@) = g(@)h(a) / [ gla)hia)da.

Suppose we wish to draw Xs from some density f(z) but that it appears difficult to
do so ‘directly’. Assume that f(z) < Mg(x) for all x, where g is an easier job to
draw samples from. Show that the two-step algorithm that first draws Y from ¢, and
then keeps this value with probability f(y)/{Mg(y)}, succeeds in its aim, i.e. being a
sample from f. — What is the frequency of rejected Y values, i.e. of ‘wasted efforts’?
Let

I'a+b) .4

— 1—2)t f 1
F(a)F(b)x (1—x) or 0 <z <1,

fz) =

i.e. the Beta distribution with parameters (a,b). Show that f is unlimited if a or b is
smaller than 1, and finds its maximum value M for the case a > 1, b > 1.

Let a = 1.33 and b = 1.67. Draw n = 1000 samples from the Beta distribution with
these parameters, using the rejection algorithm that starts with uniforms. How many
Y's did you need to make, in order to produce 1000 Xs?

Suppose in general terms that we wish to sample from a density of the form f(z) =
g(z)/I, where g is nonnegative over a certain region and I = [gdz. Assume (i)
that we sample X from a (simpler) start-density h(x), where g(x) < Mh(x) for all x,
for some K; and (ii) that we keep this candidate X with probability g(z)/{Mh(x)}.
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Verify that the probability density of a surviving X is really f(x). — The importance
of this variation on the rejection sampling recipe of point (a) above lies in the fact that
we do not need to know the number I, i.e. it is sufficient to know the target density
up to an (unknown) factor.

Set up a rejection sampling regime to get hold of say 100,000 samples (X;,Y;) from
the density

f(z,y) = g(z,y)/I, where g(z,y) = exp{sin(y/|zy|) exp(|y|*/?)},

and I is its integral over [0,1] x [0,1]. Make fine histograms of the two marginal
distributions, and find means, standard deviations, and the correlation, numerically.
Consider the following idiosyncratic recipe for creating N(0, 1) variables: sample X
from the N(0,2) (standard deviation v/2), and keep with probability exp(—1X?).
Verify that the recipe works. Simulate 100,000 samples in this way, and set up a
Pearson test with 1000 cells to test statistically that the recipe works.

The binormal density, for the case of means equal to zero and standard deviations
equal to one, is of the form

1 1 1
f(z,y) = o (1= )12 eXP{_% 1= 2 (2* +y* - 2P$y)}-

Use rejection sampling to generate 10,000 pairs (X, Y) from this binormal distribution,
for a couple of values of the correlation parameter p. Plot the pairs and make some
empirical checks that your algorithm works properly.

16. The Metropolis and Metropolis—Hastings algorithm

Let (m;) be a probability distribution over some large sample space. The task is to simulate

realisations from this distribution.

(a)

Let Xy, X9, X3, ... come from a Markov chain with transition probability matrix P; ; =
Pr{X,+1 =j| X, =i}. Show that if these are constructed such that

WiPi,j = 71'ij71' for all i,j,

and also that the chain is irreducible with period 1, then the stationary (or equilibrium)
distribution for the chain is actually (7;).

There ought to be quite some elbow room for many different P; ; constructions that
obey the conditions of (a). The Metropolis method of 1953 uses

Pz',j = Qi,j min(l, &> for j 7é i,
T
where @Q; ; = Pr{X’ = j| X = i} is the so-called proposal distribution, assumed here

to be symmetric (Q;; = Q;.;). Show that the condition of (a) really is in force with
such P; ; constructions.
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(c) Sometimes it is however practical, or even necessary, to employ ;; that are not
symmetric in (i,7). Let Q;; be a potentially non-symmetric proposal distribution
that from the present i proposes a j. Attempt using an accept probability of the type
min(1, S; jm;/m;), i.e.

Pz',j = Qi,j min(l, Si,j %) .

Show that this really works, provided S;; = Q;;/Q; ;! This amounts to Hastings’s
1970 generalisation of the Metropolis algorithm: propose j from a symmetric or non-
symmetric ; ;, and accept with probability

min(l, @&>
Qi,j ¥’

omment specifically on the special cases where Q; ; is symmetric and where Q; ; = ¢;
d) C t ifically on th ial h j is sy tric and wh g j
is independent of i.

17. The continuous space Metropolis algorithm

Methods and results from the previous exercise have analogues in the continuous world.
The task and challenge is to simulate samples from a given continuous density f(z). The
methods we develop now are meant to be able to work even in high dimension. If judged
instructive you may prefer to think in terms of a given f(x) that is too difficult to attack
with more direct means. Let q(y | z) be a proposal distribution that for a given = proposes
ay.

(a) The Metropolis—Hastings method consists in generating Xo, X1, Xo, ..., by giving Xg

some start value and by letting

Yoo — Y;  with probabiloity pr;,
“1 71 X;  with probability 1 — pr;,

where Y; is drawn from ¢(y | X;), and where

(X 1Ys) f(Y5) >
q(Yi| X;) f(X4)/

pr, = min (1,

Show, heuristically if needed, that the Markov process X7, Xo, X3, ... indeed has f(x)
as its equilibrium distribution.

(b) Explain which conditions that ought to be met in order for the simulation strategy
just described being practically effective.

(c¢) Study and comment on the special cases where ¢(y|z) = ¢(x|y) and where ¢(y | x) =
qo(y) is independent of z.

(d) You are to simulate 10000 data points from the density

) = gy e
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i.e. the Gamma density with parameters (%, 1). This is easily done in R, but the task
is to achieve this via the Metropolis—Hastings algorithm, with proposal distribution
q(y|z) equal to the uniform on [1z,3z]. Compute the mean and standard deviation
for the 10000 points you generate, and compare with the theoretical values.

18. Using Metropolis for a steep distribution

One would like to simulate independent realisations Xi, ..., X, from the probability dis-

tribution 7; = j/cpr over the set {1,..., M}, where c¢pr = j(j+1)/2. This is an easy task

for low and modetrate M, and an R routine is at your disposal. If however M is large the

problem is more difficult, and Markov Chain Monte Carlo methods may become necessary.
In the following points, let first M = 20, for the sake of easy illustrataion; the MCMC
machinery is then not necessary, but it is a good exercise to solve the problem using these

tools.

(a)

(c)

Run for free in R: use the command

x0 <- sample(list, sim, replace=T, prob)
to simulate say 1000 data points Xy ; from the distribution 7;. Check that the data
points really appear to come from the wished-for distribution over {1,...,20}, by
checking the histogram, and by using the Pearson test statistic.

Then try the Metropolis method. The challenge is to simulate a Markov chain
Y1,Ys, ... over {1,...,20} that has (m,...,m0) as its equilibrium distribution, and
that only uses very simply transitions mechanisms. Implement the Metropolis algo-
rithm for this purpose, where you use as proposal that Y; moves up one step or down
one step, from its previous value Y;_;, with equal probability % Then the proposal
is accepted with probability min(1, 7(Y;)/7(Yi—1)) (where I write m(j) for m;). Here
‘up’ and ‘down’ is meant as with ‘clock addition modulo M’; up one step from M

means 1, down one step from 1 means M.
Who invented the so-called H bomb?

Let the chain run for a long while, say Y7, ..., Y5000. Check if the Y; can be seen as a
(correlated) sample from the m;-fordelingen.

Take out each 100th Y from the chain, and check if the sub-chain Y7g, Y200, Y300, - - -
can be seen as making up an independent sample from the 7; distribution.

The method described above runs into certain problems when M is large, say M =
5000. What kind of problems, and Yro nenars (as Lenin said)? Discuss some
alternative proposal mechanisms (i.e. the choice of symmetric ); ; matrix) inside the
MCMC chain above. Implement and try out.

19. Metropolis for a distribution for telephone numbers

Consider a probability distribution across all natural numbers from zero up to a million

million, defined by
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12
1
m(r1,...,T12) = mexp{—AZ(xj — 57)2} for (z1,...,212) € {0,...,9}*2
j=1

Here Z(\) is the required summation constant, that perhaps not even HAL could manage

to compute accurately, and T = (z1 + -+ 4+ x12)/12. We may think of an outcome =z =

(:L'l,..

.,x12) as a random telephone number, in a country employing 12-digit telephone

numbers.

(a)

(b)

What kind of numbers will be preferred by this distribution, i.e. what type of x are
likely and what type less likely? Describe some aspects of outcomes, for situations
where A is respectively negative, close to zero, moderate, and large.

How can one manage to sample say 10,000 random telephone numbers from this dis-
tribution, for a given A7 Set up and implement a Metropolis algorithm for achieveing
this, and discuss how well it works.

Let
§N) =E\U(X) =E) ) (X, — X)?,

the mean of the random variance, as a function of the underlying A. Set up simulations
in a loop across A values from —3 to 3, to find numerical approximations for £(\), and
plot the resulting curve. Check directly that £(0) = 90.75.

I have got hold of n = 200 telephone numbers from the country in question, and
computed U(zx) = 2]111(1;3 — 7)? for each of these. Their average value turns out to
be U = 11.111. Estimate the A parameter. (Answer: show that maximum likelihood
estimation is equivalent to solving £(A\) = 11.111, and use simulation to show that its

solution is A = 0.488.)
How can you supplement the h) parameter estimate you found in (d) with a confidence
interval, or a standard deviation estimate?
Consctruct also a Gibbs Sampler to solve the simulation problem, implement it, and
test its efficiency vs. the direct Metropolis method above. Here you will need
m(x;|rest) = Pr{X; = x; |®1,..., -1, Tix1,...,%12)
_ gi(x; | rest)
Yo 9i(y | rest)”

where g; ought to be made as simple (and easily interpretable) as possible.

20. Autocorrelation in simulation output

Situations with independence tend to be much easier to analyse than for cases with de-

pendence. This comments also applies to simulation output; if such output stems from

MCMC then one must expect positive correlations between neighbouring realisations, with

consequences for precision of estimates etc. This exercise briefly considers the phenomenon

of autocorrelation and some of its implications.
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(a)

Suppose X1, ..., X, are independent with the same distribution, with mean y = E X;.
Then, famously, X,, = (1/n) Y"1, X; has mean p and variance o2 /n, where o is the
standard deviation of X;. Verify this, and show that

Cl, = X £1.965/vn

is a confidence interval that captures the p parameter with probability tending to 0.95.
The sole condition securing this statement is that the standard deviation is finite.

Assume now that the X;s are again from the same distribution, with mean g and

standard deviation o, but that they are dependent, with
cov(X;, X;) = o2pli=il  or corr(X;, X;) = pli=il.

for an appropriate autocorrelation parameter p. Typically, p is in (0,1), but may in
certain special cases also be negative. Show that

2
Var X,, = U {1 + —
n 1

2p ( 11—p”)};021—|—p

1—— .
nl-—p nl—p

Under various mild conditions on the exact nature of the dependence one may prove

that "
V(X = p) =4 N(0,07 P
—p

).

The consequence for estimation of means based on autocorrelated simulation output
is that the variances are inflated. In particular, the confidence interval of (a) is now
too naive, is too narrow, and undershoots its intended level of confidence. Show that

the real coverage probability of that confidence interval tends to

L—p
= < —1. .
p Pr{|N(o,1)|_,/1+p1 96}

With p = 0.90, for example, which may be a typical value for various MCMC schemes,
one finds that the real confidence level is around 0.347 rather than the intended 0.95.

A better confidence interval, under autocorrelation conditions, is

Crr = £, 41060 /LT
i\ 1-5

for a suitable estimate of p. One such estimate is

p:

~ -~ )

R 1 z”:Xi—XXi_l—X
g0 g0

n—l,2

where 7y is an estimate of the standard deviation (not identical to the usual empirical
standard deviation). Discuss versions of such a dy.
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(e)

For the random telephone numbers model of Exercise 19, use the described Metropolis
Markov chain X7, Xo, ... that converges in distribution to the target distribution, and
use acf in R to assess the degree of autocorrelation in the chain of U(X1),U(Xz2), .. ..
Concretely, acf (Usim) produces an autocorrelation plot of the simulated U(X;) val-
ues, and acf (Usim)$acf gives the estimated correlation values for pairs of points 1
position apart, 2 positions apart, 3 positions apart, etc.

For the telephone numbers model, construct a diagram that displays (i) the estimated
E (M) curve, for values 0 < A < 2 and (ii) pointwise 95% confidence intervals, qua upper

and lower curves:

Pr{a(A) <&(A\) <b(A\)} =0.95 for each A.

A simple trick for avoiding too high autocorrelation is to ‘skip data’, keeping e.g. only
simulated values corresponding to positions 1001, 1051, 1101, 1151, etc. for final anal-
ysis. Discuss aspects of such schemes.

21. Two Metropolis—Hastings exercises

This exercise provides two reasonably simple illustrations of uses of the Metropolis type

algorithm. It is useful to use these two and similar simpler situations as ‘playing grounds’,

both for investigating aspects of different tuning parameters, start values, etc., and to

get a sense for the type of computer programmes necessary in bigger and more complex

problems.

(a)

Consider the distribution with probability function
f(x) = cexp(=Alz|¥) for x =0,£1,4+2,...,

with ¢ = ¢(\, @) the summation constant. Show that this indeed defines a distribution
on the integers provided A and « are positive.

For given values of A, a, set up a Metropolis algorithm for creating a Markov chain
X1, Xa,... with proposal X, 11 = X,, £ 1, using equal probabilities for X, + 1 and
X, — 1. Implement the procedure, run the chain for a coupl’ o’ values of (A, ), and
demonstrate that it really converges in distribution to the target distribution f (even
if you start the chain far out of the main probability domain). For A = 1, throw in
another programme loop to compute and draw the curve sd(«) = sd,(X), portraying
the standard deviation as a function of «.

A perhaps rather silly but neverthless worthwhile method of simulating from the
standard normal density is by means of a Metropolis scheme with proposals created by
uniform perturbations. Specifically, set up a Markov chain X, Xo,... with proposals
Xit1,prop = Xi + 0U;, where the U; are ii.d. uniform on [—1,1] and J a parameter
signalling whether the proposed changes are big or small. Accept these proposals
in the Metropolis fashion, with the standard normal as target. Run the chain and
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demonstrate that its equilibrium distribution is indeed the standard normal. Add
another loop to your programme to monitor the acceptance rate as a function of 9.
For which ¢ is the acceptance rate equal to the quasi-magical value 0.234 (which is

the optimal balancing value, according to some criteria)?
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