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Comment on Article by Gelman

Larry Wasserman∗

1 Introduction

Brad Carlin invited me to comment on Andrew Gelman’s article because Brad considers
me an “ex-Bayesian.” It’s true that my research moved away from Bayesian inference
long ago. But I am reminded of a lesson I learned from Art Dempster over 20 years ago
which I shall paraphrase:

A person cannot be Bayesian or frequentist. Rather, a particular analysis

can be Bayesian or frequentist.

My research is very frequentist but I would not hesitate to use Bayesian methods for
a problem if I thought it was appropriate. So perhaps it is unwise to classify people
as Bayesians, anti-Bayesians, frequentists or whatever. With the caveat, I will proceed
with a frequentist tirade.

2 Coverage

I began to write this just a few minutes after meeting with some particle physicists.
They had questions about constructing confidence intervals for a particular physical
parameter. The measurements are very subtle and the statistical model is quite complex.
They were concerned with constructing intervals with guaranteed frequentist coverage.

Their desire for frequentist coverage seems well justified. They are making pre-
cision measurements on well defined physical quantities. The stakes are high. Our
understanding of fundamental physics depends on knowing such quantities with great
accuracy. The particle physicists have left a trail of such confidence intervals in their
wake. Many of these parameters will eventually be known (that is, measured to great
precision). Someday we can count how many of their intervals trapped the true param-
eter values and assess the coverage. The 95 percent frequentist intervals will live up
to their advertised coverage claims. A trail of Bayesian intervals will, in general, not
have this property. Being internally coherent will be of little consolation to the physics
community if most of their intervals miss the mark.

Frequentist methods have coverage guarantees; Bayesian methods don’t. In science,
coverage matters.
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3 The Bayesian Quandry

Suppose we observe X1, . . . , Xn from a distribution F . The usual frequentist estimator
of F is the empirical distribution

F̂n(x) =
1

n

n∑

i=1

I(−∞,x](Xi)

has two virtues. First, it is simple. Second, it comes with a frequency guarantee, namely,

P(sup
x

|F̂n(x) − F (x)| > ε) ≤ 2e−2nε2 . (1)

What is the Bayesian approach to estimating F ? We put a prior π on the set of
all distribution functions F and then we find the posterior. A common example is
the Dirichlet process prior. The Bayes’ estimator (under squared error loss) is F n =
E(F |X1, . . . , Xn).

Does F n have a guarantee like (1)? If yes, that’s nice, but then we might as well just

use F̂n. If not, then why use F n? Isn’t it better to use something with a strong guarantee
like (1)? This is the basic quandry in Bayesian inference. If the Bayes estimator has
good frequency behavior then we might as well use the frequentist method. If it has
bad frequency behavior then we shouldn’t use it.

4 The Bayesian Quandry Part II

We observe training data (X1, Y1), . . . , (Xn, Yn) and we want to predict a new Y from
a new X . The catch is that X has dimension p much larger than n. For example, we
might have n = 100 and p = 10, 000. A popular predictor is `(X) = β̂T X where β̂ is
the lasso estimator (Tibshirani 1996) which minimizes

β̂ =

n∑

i=1

(Yi − XT
i β) + λ

p∑

j=1

|βj |

and λ is chosen by cross-validation. Not only can β̂ be computed very quickly but it has
excellent theoretical properties. Specifically, the prediction risk of `(X) = β̂T X is close
to optimal among all sparse linear predictions L; see Greenshtein and Ritov (2004) for
details.

It is important to understand that nowhere does this result assume that the true
regression function m(x) = E(Y |X = x) is linear. How does Bayesian inference proceed
here? Constructing a model for the 10,000 dimensional regression function would be
absurd. Again, we can seek a formal Bayesian method with good frequency behavior
but then, why not just use the lasso? A pure Bayesian approach lacking any frequency
guarantee would be dangerous.



Larry Wasserman 465

5 Adding Randomness

Some of the greatest contributions of statistics to science involve adding additional ran-
domness and leveraging that randomness. Examples are randomized experiments, per-
mutation tests, cross-validation and data-splitting. These are unabashedly frequentist
ideas and, while one can strain to fit them into a Bayesian framework, they don’t really
have a place in Bayesian inference. The fact that Bayesian methods do not naturally
accommodate such a powerful set of statistical ideas seems like a serious deficiency.

6 A Uniter Not a Divider

I’ve taken a strident and extreme tone to make my point. I reiterate that I would not
hesitate to use Bayesian methods for a problem if I thought it was appropriate. There
is room for both frequentist and Bayesian methods. Excepting a few special cases,
frequency guarantees are essential even for Bayesian methods.
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