
Final project STK4030-f12 - Modern Data
Analysis

This is the problem set for the project part of the finals in STK4030-f12.
The reports shall be individually written. You may discuss the solutions
with your fellow students, but the intention is that the final formulations
shall be done individually.

The deadline for turning in the reports is

Monday December 3’rd at 5 pm.

Three copies marked with your candidate number shall be placed in Anders
Rygh Swensen’s post box at room B700 at the seventh floor in N. H. Abel’s
house. Handwritten reports are acceptable. Enclose the parts of the com-
puter outputs which are necessary for answering the questions. The other
parts can be collected in appendices. When you refer to material in these,
be careful to indicate explicitly where .

Magne Aldrin and Anders Rygh Swensen

Problem 1

Consider the situation where the training set consists of N responses/targets
and the inputs/covariates can be arranged in a N×(p+1), matrix, X, where
the first column of X consists of 1’s. The targets or responses are collected
in the vector y. Assume that all the responses have the same variance, σ2

ε .

a) In the situation where p = 1 explain why adding a constant c to all the
targets implies that all the predicted/ fitted values are similarly shifted
when ordinary least squares (OLS) is used.

b) Will the result in part a) hold for general p? Explain why.

c) Show that this invariance will not hold if the predicted values are ŷ =
X(XTX + λI)−1XTy with λ > 0. Remark that it will be sufficient to
write out the details for the case p = 0.

The ridge regression coefficients are defined as a solution of the following
minimization problem:

β̂ridge = argminβ{
N∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j } (1)

where λ is the penalty. Note that the coefficient β0 is not part of the sum of
penalties.
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d) Show that the minimization problem can alternatively be written as

β̂c = argminβc{
N∑
i=1

[yi − βc
0 −

p∑
j=1

(xij − x̄j)β
c
j ]

2 + λ

p∑
j=1

(βc
j )

2}, (2)

where x̄j =
∑N

i=1 xij/N and show how β̂c can be expressed by β̂ridge,
i.e. give the correspondence between βc and the original β in (1).

e) Explain how the result in part d) can be used to separate ridge re-
gression into two parts: first the coefficient βc

0 is estimated as ȳ =∑N
i=1 yi/N , then the remaining coefficients are estimated by ridge re-

gression without intercept from the centered values of the inputs, xij −
x̄j

We will therefore in the rest of the problem assume that the inputs have
been centered, and denote the N × p matrix consisting of these values as Xc.
Then the ridge regression estimates can be expressed as β̂ridge = (XT

c Xc +
λI)−1XT

c y.

f) In section 7.6 in the textbook The Elements of Statistical Learning
(ESL) the effective degrees of freedom is defined as df(ŷ) =

∑N
i=1Cov(ŷi, yi)/σ

2
ε .

Show that this is the same as the expression in formula (3.50) in section
3.4.1, i.e

∑p
j=1 d

2
j/(d

2
j + λ) where d1, . . . , dp are the singular values of

Xc.

Problem 2

This problem is an analysis of the data set no2 which is available on the
course web-page. You can read it into R by the following command:

no2<-read.table("http://www.uio.no/studier/emner/matnat/math/STK4030/h12/

undervisningsmateriale/no2.data",header=T,row.names=NULL)

This data set consists of 50 hourly observations (this is a subset of a much
larger data set collected in the period from October 2001 to August 2003)
of NO2 concentration at a road in Oslo with corresponding measurements of
the number of cars and meteorological variables.

Some information on the data:

• 1 response variable

– logNO2: the (natural) logarithm of the NO2 concentration

• 7 predictors

– logCars: the (natural) logarithm of the number of cars
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– temp: temperature 2 m above ground (degree C)

– tempDiff: temperature difference between 25 m and 2 m above
ground (degree C)

– windSpeed: wind speed (m/s)

– windDir: wind direction (degrees between 0 and 360)

– hour: time of day (hour)

– dayNo: day number (counted from Oct. 1, 2001 - e.g., Oct.1 2001
= 1, Oct. 2 2001 = 2)

a) Estimate a linear regression model with logNO2 as response, and with
all 7 predictors, by (ordinary) least squares. You may use the lm func-
tion in R. Report the estimated coefficients. Report also the estimated
variance of the noise (= variance of error term).

In the remaining part of this exercise, you should first estimate the same
model by ridge regression with optimal tuning parameter found by cross-
validation as detailed in Step 1) and Step 2) and answer the questions b)-e).
Then you should find the optimal tuning parameter using AIC and answer
question f).

Step 1) First, standardize each predictor to have standard deviation 1 by
dividing each predictor by its sample standard deviation, i.e. xij/sj, where

sj =
√
1/n

∑i=n
i=1 (xij − x̄j)2 and n is the number of observations. Then, for a

given λ, find the ridge regression coefficient. Then transform the estimated
regression coefficients back to original scale. You may use the R function
lm.ridge from the MASS library for this.

Step 2) Consider the following 17 candidate values for λ:
{105, 104, 103, 500, 100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 10−3, 10−4, 10−5}.
Perform 10-fold cross-validation to find the optimal value of λ among these
candidate values. You may use the cv.k function and other parts of the
computer code from Extra exercise 3.4, see the course web page
http://www.uio.no/studier/emner/matnat/math/STK4030/h12/.

b) Explain why it is reasonable to standardize the predictors to have the
same standard deviation.

c) Plot the cross-validated root mean squared error against the logarithm
with base 10 of the λ values (use the R function log10). What is the
optimal value of λ?

d) Report the estimated regression coefficients for the optimal value of λ.
Compare them with the (ordinary) least squares estimates from task
a). Is the result as what you could expect?
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e) Compute the effective degrees of freedom (= effective number of param-
eters) for each value of λ. Here, you can ignore the the contributions
from from the intercept and the error variance. Plot the effective de-
grees of freedom against the logarithm with base 10 of the λ values.

f) Assume that the noise is Gaussian with constant variance. Compute
the value of AIC (Akaike’s Information Criterion) for each value of λ,
where the error variance is assumed known and set equal to the estimate
variance of the noise from task a). Plot the AIC values against the
logarithm with base 10 of the λ values. What are the optimal λ value
according to this model selection criterion?

Problem 3

This is essentially Exercise 6.10 on page 217 in the textbook ESL. Consider
N samples generated from the model Y = f(x) + ε, where E(ε) = 0 and
V ar(ε) = σ2. The inputs x1, . . . , xN are considered fixed, and ε1, . . . , εN
are independent. The regression function f(x) is estimated using a linear

smoother Sλ with smoothing parameter λ, so the fitted values are f̂λ = Sλy
where y = (y1 . . . , yN)

′ contains the observed responses. Consider the in-

sample prediction error EY 0 [ 1
N

∑N
i=1(Y

0
i − f̂λ(xi))

2], defined formula (7.18) in
ESL and specified to squared error loss.

a) Find the expectation of the training error err defined in formula (7.17)
in ESL when the loss function is squared error.

b) Show that for squared error loss will the random variable Cλ defined
as err + 2σ2

N
trace(Sλ) have the same expectation as the in-sample pre-

diction error.

Problem 4

This is an elaboration on exercise 5.5 in the textbook ESL analyzing the
phoneme data, which can be found on the textbook web-page and read in by
the following R-command

phoneme <- read.table("http://www-stat.stanford.edu/~tibs/ElemStatLearn/

datasets/phoneme.data",header=T,sep=",")[-1]

The data consist of 4509 pronunciations of the phonemes ”sh” ”iy” ”dcl”
”aa” or ”ao”, together with log periodograms at 256 frequencies. Here the
phoneme type is the response, which therefore has five categories, and the
256 log-periodograms are inputs or covariates. These features are correlated,
so filtering them using splines is a possibility.

Draw a random sample consisting of 3000 observations that will be used as
a training set, and the remaining 1509 as a test set.
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a) Plot the natural cubic splines in the interval [0, 1] in the basis using
the truncated power representation introduced in section 5.2.1 in ESL
when there are 4 knots at 0.2, 0.4, 0.6 and 0.8.

b) Explain how the natural cubic splines can be used to filter the inputs.

c) Consider the following three choices of number, M, and localization of
the knots ξ1, . . . , ξM

– M = 3, knots at the 0.25, 0.50, 0.75 percentiles of the frequencies,
i.e. at the 64’th, 128’th and 192’th frequency.

– M = 3, knots at the 0.1, 0.50, 0.9 percentiles of the frequencies,

– M = 4, knots at the 0.2, 0.4, 0.6, 0.8 percentiles of the frequencies.

Use these three alternatives for filtering and classify the data in the
training set using quadratic discriminant analysis. Report the test
error rates.

d) Explain how five-fold cross-validation based on the data in the training
set can be used to choose among the possible alternatives. Report the
estimates of the prediction errors in this case.

e) Discuss the results from part c) and d). What is your conclusion?

[ R hints: For implementing the quadratic discriminant analysis you can use
the procedure qda from the MASS library.]
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