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Exercise 1 (Classification and unlabeled data)
We will in this exercise see how estimation can be based on training data with known
classes combined with data where the class labels are unknown.

Assume

T = {xk,j, k = 1, ..., K, j = 1, ..., nk,xi, i = 1, ..., N}

where xk,j is an observation from class k while xi is an observation with unknown class.
We will assume that π1, ..., πK are all equal to 1/K, while fk(x;θ) is the probability

density for data from class k. We want to estimate θ based on data T .

(a) Show that

f(xi;θ) =
K∑
k=1

1

K
fk(xi;θ)

and use this to derive an expression for the likelihood function L(θ; T ) = p(T |θ) as
well as the log-likelihood function l(θ; T ) = log[l(θ; T )] for T .
Discuss estimation of θ only based on {xk,j, k = 1, ..., K, j = 1, ..., nk} related to
estimation of θ based on the whole T .

In order to estimate θ, we will use an iterative procedure called the EM algorithm (EM is
a abbreviation for Expectation-Maximization). This is a algorithm that can be used when
parts of the data is unobserved (or missing or incomplete). In our case we can think of the
classes corresponding to xi, i = 1, ..., N as missing. Let Cm = (Cm

1 , ..., C
m
N ) be the missing

classes.
Denote by p(T ,Cm|θ) the probability density for the “complete” data, that is when all

classes are known. Treated as a function of θ this would be the function to maximize if
Cm was known. The first step of the EM-algorithm is to Estimate log p(T ,Cm|θ) by its
expectation:

Q(θ,θ′) = E
Cm [log p(T ,Cm|θ)|T ;θ′].
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Here the expectation is under the model and our current best guess of θ being equal to
θ′. The next step is the Maximization where a new value for θ is obtained by maximizing
Q(θ,θ′) wrt θ.

Specifically, the algorithms runs as follows:
Start with a sensible initial value of θ0 for θ (e.g. estimates based on only using the

data with known classes). For s = 1, 2, ..., perform the following steps:

E-step : Find

Q(θ,θs−1) = E
Cm [log p(T ,Cm|θ)|T ;θs−1]

M-step : Find θs as the value which maximizes Q(θ,θs−1) wrt θ.

It can be shown that (see e.g. sec 8.5 in the text book) that at each iteration there will be
an increase (or at least not a decrease) in L(θ; T ) =, that is

L(θs; T ) ≥ L(θs−1; T )

If the (log-) likelihood function also is bounded (which it often is), the algorithm will
converge to a (local) maximum.

(b) Show that for our situation

Q(θ,θs−1) =
K∑
k=1

nk∑
j=1

[log pk(xk,j;θ) + log πk]+

N∑
i=1

K∑
k=1

p(Ci = k|xi;θ
s−1)[log pk(xi;θ) + log πk]

where p(Ci = k|xi;θ
s−1) is the conditional probability for Ci = k given that the true

parameters are θs−1.

Hint: Write the log-likelihood for (xi, Ci) as

K∑
k=1

I(Ci = k)[log pk(xi) + log πk]

where I(Ci = k) = 1 is 1 if Ci = k and 0 otherwise.

(c) Show that maximization of Q(θ,θs−1) wrt πk, k = 1, ..., K gives

π̂s
k =

nk +
∑N

i=1 p(Ci = k|xi;θ
s−1)

n+N

where n =
∑

k nk. Comment on this result!

Hint: Remember that
∑

k πk = 1. Use Lagrange’s method in order to take this
constraint into account.
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In the rest of the exercise we will assume pk(x;θ) = N (µk,Σk). In this case θ =
{(µk,Σk), k = 1, ..., K}.

(d) Show that

µ̂s
k =

∑nk

j=1 xk,j +
∑

i=1 p(Ci = k|xi;θ
s−1)xi

nk +
∑

i=1 p(Ci = k|xi;θ
s−1)

.

by differentiating Q(θ,θs−1) wrt µk and but to zero.

One can also show that (you do not need to do this)

Σ̂
s

k =

∑nk

j=1(xk,j − µ̂k)(xk,j − µ̂k)
T +

∑
i=1 p(Ci = k|xi;θ

s−1)(xi − µ̂k)(xi − µ̂k)
T

nk +
∑

i=1 p(Ci = k|xi;θ
s−1)

.

Comment also on these results!

(e) On the course web page, there is an R-script called EM_mix.R which for K = 2 first
simulate data with nk = 10 and N = 1000 from a known set of parameters, followed
by estimation only using data with known classes and thereafter the full data set. Try
out this script many times and compare the performances of the different estimators.
Comment on the results!

Exercise 2 (Analysis of the iris data)
This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

The data is available in R names iris. We will in this exercise consider different
methods for constructing a classification method for these data.

• Specify a method for comparing different classification methods (e.g splitting into
training/test sets, cross-validation ...)

• Try out different classification methods you have learned on the iris data. Which
method performs best?

• For the best method, also make a socalled confussion matrix, that is a matrix with
rows the true classes and columns the predicted classes.
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