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Exercise 1 (Classification and unlabeled data)
We will in this exercise see how estimation can be based on training data with known
classes combined with data where the class labels are unknown.

Assume

T = {xk,j, k = 1, ..., K, j = 1, ..., nk,xi, i = 1, ..., N}

where xk,j is an observation from class k while xi is an observation with unknown class.
We will assume that π1, ..., πK are all equal to 1/K, while fk(x;θ) is the probability

density for data from class k. We want to estimate θ based on data T .

(a) Show that

f(xi;θ) =
K∑
k=1

1

K
fk(xi;θ)

and use this to derive an expression for the likelihood function L(θ; T ) = p(T |θ) as
well as the log-likelihood function l(θ; T ) = log[l(θ; T )] for T .
Discuss estimation of θ only based on {xk,j, k = 1, ..., K, j = 1, ..., nk} related to
estimation of θ based on the whole T .

In order to estimate θ, we will use an iterative procedure called the EM algorithm (EM is
a abbreviation for Expectation-Maximization). This is a algorithm that can be used when
parts of the data is unobserved (or missing or incomplete). In our case we can think of the
classes corresponding to xi, i = 1, ..., N as missing. Let Cm = (Cm

1 , ..., C
m
N ) be the missing

classes.
Denote by p(T ,Cm|θ) the probability density for the “complete” data, that is when all

classes are known. Treated as a function of θ this would be the function to maximize if
Cm was known. The first step of the EM-algorithm is to Estimate log p(T ,Cm|θ) by its
expectation:

Q(θ,θ′) = E
Cm [log p(T ,Cm|θ)|T ;θ′].
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Here the expectation is under the model and our current best guess of θ being equal to
θ′. The next step is the Maximization where a new value for θ is obtained by maximizing
Q(θ,θ′) wrt θ.

Specifically, the algorithms runs as follows:
Start with a sensible initial value of θ0 for θ (e.g. estimates based on only using the

data with known classes). For s = 1, 2, ..., perform the following steps:

E-step : Find

Q(θ,θs−1) = E
Cm [log p(T ,Cm|θ)|T ;θs−1]

M-step : Find θs as the value which maximizes Q(θ,θs−1) wrt θ.

It can be shown that (see e.g. sec 8.5 in the text book) that at each iteration there will be
an increase (or at least not a decrease) in L(θ; T ) =, that is

L(θs; T ) ≥ L(θs−1; T )

If the (log-) likelihood function also is bounded (which it often is), the algorithm will
converge to a (local) maximum.

(b) Show that for our situation

Q(θ,θs−1) =
K∑
k=1

nk∑
j=1

[log pk(xk,j;θ) + log πk]+

N∑
i=1

K∑
k=1

p(Ci = k|xi;θ
s−1)[log pk(xi;θ) + log πk]

where p(Ci = k|xi;θ
s−1) is the conditional probability for Ci = k given that the true

parameters are θs−1.

Hint: Write the log-likelihood for (xi, Ci) as

K∑
k=1

I(Ci = k)[log pk(xi) + log πk]

where I(Ci = k) = 1 is 1 if Ci = k and 0 otherwise.

(c) Show that maximization of Q(θ,θs−1) wrt πk, k = 1, ..., K gives

π̂s
k =

nk +
∑N

i=1 p(Ci = k|xi;θ
s−1)

n+N

where n =
∑

k nk. Comment on this result!

Hint: Remember that
∑

k πk = 1. Use Lagrange’s method in order to take this
constraint into account.
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In the rest of the exercise we will assume pk(x;θ) = N (µk,Σk). In this case θ =
{(µk,Σk), k = 1, ..., K}.

(d) Show that

µ̂s
k =

∑nk

j=1 xk,j +
∑

i=1 p(Ci = k|xi;θ
s−1)xi

nk +
∑

i=1 p(Ci = k|xi;θ
s−1)

.

by differentiating Q(θ,θs−1) wrt µk and but to zero.

One can also show that (you do not need to do this)

Σ̂
s

k =

∑nk

j=1(xk,j − µ̂k)(xk,j − µ̂k)
T +

∑
i=1 p(Ci = k|xi;θ

s−1)(xi − µ̂k)(xi − µ̂k)
T

nk +
∑

i=1 p(Ci = k|xi;θ
s−1)

.

Comment also on these results!

(e) On the course web page, there is an R-script called EM_mix.R which for K = 2 first
simulate data with nk = 10 and N = 1000 from a known set of parameters, followed
by estimation only using data with known classes and thereafter the full data set. Try
out this script many times and compare the performances of the different estimators.
Comment on the results!

Exercise 2 (Analysis of the iris data)
This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

The data is available in R names iris. We will in this exercise consider different
methods for constructing a classification method for these data.

• Specify a method for comparing different classification methods (e.g splitting into
training/test sets, cross-validation ...)

• Try out different classification methods you have learned on the iris data. Which
method performs best?

• For the best method, also make a socalled confussion matrix, that is a matrix with
rows the true classes and columns the predicted classes.

Exercise 3 (GAM on bone dataset)
The bone dataset, available from
http://www.uio.no/studier/emner/matnat/math/STK4030/h13/data/
are relative spinal bone mineral density measurements on 261 North American adolescents.
Each value is the difference in spnbmd taken on two consecutive visits, divided by the
average. The age is the average age over the two visits.

Variables:
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idnum : identifies the child, and hence the repeat measurements

age : average age of child when measurements were taken

gender : male or female

spnbmd : Relative Spinal bone mineral density measurement

Consider the following R-commands:

l ibrary (mgcv)
l ibrary (mgcv)
bone = read . table ( " . . /data/bone . data" , header=T)
bone . gam = gam(spnbmd~s ( age)+gender , data=bone )
plot ( bone . gam)
summary( bone . gam)

(a) Explain the model behind the gam call.

(b) Copy the commands from the lecture in order to find the optimal degrees of smooth-
ness using both the AIC and the BIC criterions.

Hint: Specify the tuning.scale vector in the range 0.1 to 6.

(c) Also fit a model where age is linear. Use some criterion to compare the different
models.

(d) Discuss the results obtained.

Exercise 4 (Trees and CPUs)
In this exercise we will use regression trees for fitting a model to the relative performance
measure and characteristics of 209 CPUs. The dataset can be made available in R by the
command

l ibrary (MASS)

More information about the dataset can be obtained by

names( cpus )
help ( cpus )

Note that the first variable is the name of Manufacturer and model and is not a variable
to be used.

We further need to make the functions for trees available through the command

l ibrary ( rpar t )

(a) In order to fit a tree to data, the command rpart can be used. Try out the commands
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cpus . rp <− rpar t ( log10 ( p e r f )~syc t+mmin+mmax+cach+chmin+chmax ,
cp=1e−3, cpus )

print ( cpus . rp , cp=0.01)
plot ( cpus . rp , uniform=T) ; text ( cpus . rp , d i g i t s =3)

Try to understand what you get out of this.

Also try to remove 10 randomly chosen points from the data-set and fit a new tree.
Discuss differences in the trees.

(b) An important part in fitting an approperiate tree is pruning. The amount of pruning
depends on the complexity parameter (CP). Try out the commands

pr in tcp ( cpus . rp )
p lotcp ( cpus . rp )

and describe the different columns in the output from the first command. Using
the 1-SE rule (choosing the smallest model within one standard deviation of the
mimimum), which CP value would you choose?

(c) You can obtained a pruned tree with a given CPvalue with

cpus . rp1 <− prune ( cpus . rp , cp=??)

where ?? is to be replaced by a specific value. Try this out and make a plot of the
pruned three. Comment on differences from the full tree.

(d) Calculate the in-sample error based on the pruned tree.

Hint: Use the generic predict command.

(e) Try to write down a model and a likelihood function which justifies the Qm(T )
measure as defined in (9.15) in the text-book.

Exercise 5 (Measures for classification trees)
Consider a classificaton tree where the full space Rp is divided into |T | regions R1, ..., R|T |.
Further assume that

Pr(Y = k|x ∈ Rm) = pmk.

For data {(xi, yi), i = 1, ..., n}, consider a Likelihood function of the form

L =
n∏

i=1

K∏
k=1

p
I(yi=k)
m(i)k

where m(i) is the region that xi belongs to.

(a) Discuss what kind of assumptions the likelihood above is based on.
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(b) Define

Nm =
n∑

i=1

I(xi ∈ Rm),

p̂mk =
1

Nm

∑
i:xi∈Rm

I(yi = k).

Show that

l = log(L) =

|T |∑
m=1

K∑
k=1

Nmp̂mk log pmk.

(c) Assume now that we insert p̂mk as an estimate for pmk into the loglikelihood. Show
that

−l =
|T |∑
m=1

NmQm(T )

for a suitable choise of Qm(T ). Which of the measures defined in equation (9.17) in
the textbook does this measure correspond to?

Exercise 6 (Leave-one-out cross-validation)
The leave-one out cross-validation for estimate of prediction error is defined through

CV =
1

N

N∑
i=1

L(yi, f̂
−i(xi))

where f̂−i(xi) is the prediction of f(xi) based on all observations except the ith observation.
Consider a linear smoothing model where in-sample predictions based on all data are

given by f̂(xi) =
∑N

l=1 Silyl while the leave-one out cross-validation estimate is given by
f̂−i(xi) =

∑
l 6=i S

−i
il yl.

(a) Show that if S−iil = Sil/(1− Sii), then

yi − f̂−i(xi) =
yi − f̂(xi)
1− Sii

. (*)

Discuss what practical consequences this result have with respect to calculation of
CV .

(b) Consider now linear regression Y = Xβ + ε with the least squares estimates β̂ =
[XTX]−1XTY . Denote by X−i the design matrix excluding row i. Show that

f̂−i(xi) =x
T
i [X

T
−iX−i]

−1[XTY − xiyi]
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(c) Show that XT
−iX−i =X

TX − xix
T
i and use this to show that

[XT
−iX−i]

−1 = [XTX]−1 +
[XTX]−1xix

T
i [X

TX]−1

1− xT
i [X

TX]−1xi

.

(d) Show that Sii = x
T
i [X

TX]−1xi.

(e) Use these results to show that

f̂−i(xi) =
1

1− Sii

f̂(xi)−
Sii

1− Sii

yi

and finally show that for linear regression with ordinary least squares estimation,
equation (*) is satisfied.

Exercise 7
The zip dataset contains normalized handwritten digits, automatically scanned from en-
velopes by the U.S. Postal Service. The original scanned digits are binary and of different
sizes and orientations; the images here have been deslanted and size normalized, resulting
in 16 x 16 grayscale images (Le Cun et al., 1990).

The data are in two files, and each line consists of the digit id (0-9) followed by the 256
grayscale values. There are 7291 training observations and 2007 test observations.

At the course homepage a file zip_nn_exer.R contain commands for performing clas-
sification based on neural network.

(a) Go through the commands and try to understand what is done. In particular com-
ment on the part doing the normalization.

(b) Run the commands and comment on the results.

(c) Compare this with some of the other methods you have learned through the course.
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