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Solution proposal

Problem 1

In addition to the definition of the methods as described in the textbook in
sections 3.3-3.6 a discussion of how the methods are used in model selection
is appropriate.

Problem 2

a) trace[X(XTX)−1XT ] = trace[(XTX)(XTX)−1] = trace(Ip+1) = p +
1.

b)
ŷi = xTi (X

TX)−1XTy.

By independence cov(ŷi, yi) = xTi (X
TX)−1xiσ

2
ε = trace(xix

T
i (X

TX)−1)σ2ε ,
so
∑N

i=1 cov(ŷi, yi) =
∑N

i=1 trace(xix
T
i (X

TX)−1)σ2ε = trace((XTX))(XTX)−1)σ2ε =
(p+ 1)σ2ε .

c) A linear fitting method is one for which the fitted values can he written
ŷ = Sy for a N×N matrix which only depends on the input vectors xi
but not on the responses yi. The effective degrees-of-freedom is defined
as df(S) = trace(S).

d) By independence cov(f̂(xi), yi) = cov( 1k
∑

xj∈Nk(x)
yj , yi) = 1

k . Thus∑N
i=1 cov(

1
k

∑
xj∈Nk(x)

yj , yi) =
N
k .

Each row corresponds to an observation with input xi. Let xi1 , . . . , xik
be the inputs which are in Nk(xi). Let the elements in S be

Siij =

{
1/k j = 1, . . . , k
0 else

(Continued on page 2.)



Examination in STK4030, Thursday December 13’th 2012 Page 2

Then S does not depend on the yi’s and 1
k

∑
xj∈Nk(x)

yj = Sy.

Problem 3

a) Model:

Pr(G = 1|X = x) =
exp(β0 + βTx)

1 + exp(β0 + βTx)
, P r(G = 0|X = x) = 1−P (G = 1|X = x)

Log-likelihood:

l(β) =
N∑
i=1

{yi log p(xi, β) + (1− yi) log(1− p(xi, β))}

b) Model:

Pr(G = k|X = x) =
exp(βk0 + βTk x)

1 +
∑K−1

l=1 exp(βl0 + βTl x)
, k = 1, . . . ,K − 1

Pr(G = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βTl x)

Denote responses as yij , j = 1, . . . ,K, i = 1, . . . , N where
∑K

j=1 yij =
1, i = 1, . . . , N . Then log likelihood may be expressed as

N∑
i=1

{
K∑
j=1

[βj0 + βTj xi]yij − log[1 +

K−1∑
l=1

exp(βl0 + βTl xi)]}

where βK0 = 0 and βK = 0.

A localized log-likelihood is constructed by weighing the terms in the
sum by a kernel, i.e.

N∑
i=1

K(x0, xi){
K∑
j=1

[βj0 + βTj xi]yij − log[1 +

K−1∑
l=1

exp(βl0 + βTl xi)]}

c) Fitting a locally constant logistic model consists of minimizing

minα(x0)

N∑
i=1

K(x0, xi){
K∑
j=1

αj0(x0)yij}−
N∑
i=1

K(x0, xi){log[1+
K−1∑
l=1

exp(αl0(x0))]}

where α(x0) = (α1(x0), . . . , αK−1(x0))
T and αK(x0) = 0. But

∂

∂αj(x0)
=

N∑
i=1

K(x0, xi)yij

−
N∑
i=1

K(x0, xi){
exp(αj(x0))

1 +
∑K−1

l=1 exp(α0(x0)
}, j = 1, . . . ,K − 1

Thus ∂
∂αj(x0)

= 0 has solution

N∑
i=1

K(x0, xi)yij =
exp(α̂j(x0))

1 +
∑K−1

l=1 exp(α̂0(x0)

N∑
i=1

K(x0, xi), j = 1, . . . ,K−1

(Continued on page 3.)
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or

f̂j(x0) =
exp(α̂j(x0))

1 +
∑K−1

l=1 exp(α̂0(x0)
=

∑N
i=1K(x0, xi)yij∑N
i=1K(x0, xi)

, j = 1, . . . ,K−1

Also,

f̂K(x0) = 1−
K−1∑
j=1

f̂j(x0) =

∑N
i=1K(x0, xi)[1−

∑K−1
j=1 yij ]∑N

i=1K(x0, xi)
=

∑N
i=1K(x0, xi)yiK∑N
i=1K(x0, xi).

Thus for all the categories the fitted values are the smoothed response
indicators separately using the Nadaraya-Watson kernel smoother.
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