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Problem 1.

(a) We have that

E[(Y − Ŷ (X))2] =E[(Y − E[Y |X] + E[Y |X]− E[Ŷ ] + E[Ŷ ]− Ŷ (X))2]

=E[(Y − E[Y |X])2] + E[(E[Y |X]− E[Ŷ ])2] + E[(E[Ŷ ]− Ŷ (X))2]+

2E[(Y − E[Y |X])(E[Y |X]− E[Ŷ ])]+

2E[(Y − E[Y |X])(E[Ŷ ]− Ŷ (X))]+

2E[(E[Y |X]− E[Ŷ ])(E[Ŷ ]− Ŷ (X))]

=Var(Y ) + [Bias(Ŷ (X))]2 + Var(Ŷ )

(all the cross-terms becomes zero).

This result shows that there typically will be a tradeoff between
variance and bias (the first term is independent of the choise of Ŷ ).
Predictors with less constraints will have small bias but can potentially
have large variance, while more constrained predictors will have less
variance but can have large bias if the constraints do not fit well with
how the data is generated.

(Continued on page 2.)
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We further have

E[L[Y, Ŷ (X)]] =EXEY |X [L[Y, Ŷ (X)]|X]

and it is enough to minimize EY |X [L[Y, Ŷ (X)]|X] for each X. We
have

EY |X [L[Y, Ŷ (X)]|X] =E[(Y − Ŷ (X))2|X]

=E[(Y − E[Y |X] + E[Y |X]− Ŷ (X))2|X]

=E[(Y − E[Y |X])2|X] + (E[Y |X]− Ŷ (X))2

The prediction is minimized with Ŷ (x) = E[Y |X = x] = f(x).

(b) The first predictor is based on a linear model. It will have small variance
due to hard constraints on the model. But if f(X) is far from linear,
the bias can be severe. The other estimator puts less constraints on
the model, although it will depend on the choice of k. For small k, the
bias will be small, but the variance will be high. For larger k, the bias
decreases at the cost of higher variance. The degrees of freedom in the
linear model is p while the degrees of freedom in the k-nearest neighbor
predictor is N/k. Typically N/k needs to be smaller than p in order to
obtain flexibility.

Problem 2.

(a) This is Ridge regression. It puts penalties on the βj’s shrinking these
to zero compared to least squares. λ is a complexity parameter that
controls the amount of shrinkage with λ = 0 corresponding to ordinary
least squares. Such a method can reduce the variance but also increase
the bias. λ can be chosen by e.g. cross-validation. Note that there is
no penalty on β0, making no restriction on the overall level.

(b) We can write the criterion as

RSS(λ) = (y − β01−Xβ)T (y − β01−Xβ) + λβTβ

Then

∂

∂β0
RSS(λ) =− 2((y − β01−Xβ)T1

showing that

β̂0 = ȳ − x̄Tβ.

(Continued on page 3.)
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Defining ỹi = yi − ȳ and x̃i = xi − x̄, the criterion is then modified to

RSS(λ) =(ỹ − X̃β)T (ỹ − X̃β) + λβTβ

and

∂

∂βT
RSS(λ) =− 2X̃

T
(ỹ − X̃β) + λ2β

giving

β̂ =
[
X̃

T
X̃ + λI

]−1
X̃

T
ỹ

(c) This is called Lasso regression. In this case an L1 norm penalty is used.
This has the effect that some of the βj’s are shrinked exactly to zero
and thereby works as a variable selector. This is in contrast to Ridge
regression where the βj’s only are downweighted.

Given these distinct properties, the left plot corresponds to Lasso and
the right to Ridge. In both cases the rightmost values correspond to
least squares.

(d) Can either be chosen by considering a validation set or by cross-
validation.

Problem 3.

(a) When we consider decision boundaries, these are given by

Pr(G = 1|X = x) = Pr(G = 2|X = x)

which is equivalant to that

exp(β0 + βTx) = 1

which again is equivalant to that

β0 + βTx = 0

which is a linear constraint and thereby we get a linear boundary.

(Continued on page 4.)
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(b) The typical method is maximum likelihood, that is maximize

L(β) =
N∏
i=1

pyi(xi;β)

where pyi(xi;β) = Pr(G = yi|X = xi). Equivalently we can minimize

−2 logL(β) = −2
N∑
i=1

log pyi(xi;β)

Note that Ridge regression with Gaussian observations corresponds to
minimizing

−2 logL(β) + λ

p∑
j=1

β2
j

Penalities on the βj’s in a logistic regression setting can be done
similarly. Also Lasso penalties can be done in the same way.

Problem 4.

(a) All variables except “regn1uke” seems to give significant contribution
to the prediction, All the other variables show nonlinear relationships.
The first four variables give increased responses when the explanatory
variables increases although all except “hastighet” seems to flatten out
for large values. For the first three variables is is certainly reasonable
that we have a postive effect. The relation to temparature is not that
obvious. For “regn4time” is seems like there is a more discrete type of
behaviour. When this value is below a certain threshold, we get high
values (with a linear decrease), while it decreases to a stable value for
values above 1. This is also reasonable in that when there is rain, this
will force the particles to the ground, and it is enough with a certain
hour. It also makes sence that it is the most recent precipitation that
matters, not an average of the last week.

(b) The data do not contain speed values over 60 km/hour, but by
extrapolating the relationship for “hastighet” (which seems linear above
50), we can predict that an increase of 20 km/hour corresponds to an
increase of 0.3 in the respons (using that it seems like the increase from
0.5 to 0.6 is about 0.15). There is however a huge uncertainty in this
prediction since we need to assume that the behaviour within 50-60
continues for higher speeds!

(Continued on page 5.)
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Problem 5.

(a) The model is described by

Y = f(x) + ε = β0 +
M∑

m=1

gm(ωT
mx) + ε

where β0 is an intercept term (sometimes dropped when we write the
model), the gm(·)’s are smooth functions that are to be estimated from
the data and the ωm’s are coefficient (or direction) vectors that defines
lnear combinations of the explanatory variables. Finally ε is an error
term.

Thus, the response is described by a sum of non-linear functions of
linear combinations of the explanatory variables.

The tuning parameters are the number of terms M and the smoothing
parameter(s) for the non-linear functions. Given these, the model is
estimated by least squares.

(b) Interpretation: This model has two terms. The first term is essentially
the difference between a weighted sum of x1, x2 and x3 and x4 . The
response is increasing exponentally by this linear combination. The
second term is essentially the difference between a weighted sum of x1,
x2 and x4 and x3. The response is a quadratic function of this linear
combination.

The model explains the relationship between y and the x-es reasonably
well, because the originl standard deviation of y is 3.76, and this is re-
duced to a residual standard error of 0.93, and a cross-validated RMSE
of 0.98, both much lower than 3.76.

A GAM model with only univariate (one x per time) terms would
probably not model the relationship beetween y and the x-es equally
well as the PPR model. This is because i) the scatter plot matrix
show only rough relationships between y and each of the x-es, and
no non-linear relationships, whereas the PPR model shows that y is
non-linearly dependent on differences between the x-es.

END


