Solution STK4030 Fall 2015

1 Problem 1 Solution

(a) Method 1 is Lasso regression in matrix and vector notation:

n 2
PRSSY™ = |ly = XBI3+ MBI =Y (4 — 2 — i2B2)” + A Y _ |5,
i=1 j=1
and method 2 is ridge regression
. n 2
PRSSY™" = |y — X B3+ A8"8 = Z (yi — v B — w2fo)” + )\ZBJZ-
i=1 j=1

(b) Lasso regression can perform variable selection by estimating Bj to be exactly zero.
Ridge regression does not have this characteristic. This is due to the diamond shape
of the restriction space given by the (absolute value) L; norm, while the circular
shape of the Ly norm in ridge results in all estimates being non-zero. See figure
3.11 page 71 (Hastie et al., 2009).

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions 51| + |Bz| <t and ;”3? + 5f < 1’,2, respectively,
whaile the red ellipses are the contours of the least squares error function.



2 Problem 2 Solution

(a) The OLS estimate is given 3°L5 = (X7 X)~' X Ty, such that X7 XB°LS = XTy.

This means that

Bridge _ (XTX + )\I)iley,
— (XTX—F)\I)ilXTXBOLS — ABOLS,

(1)
(2)

where the matrix A is given as A = (X7X + A I)"' X7 X. The estimated ridge co-
efficients are therefore a linear combination of the estimated OLS coefficient (under
the assumption that the data matrix X is of full rank.)

Bridge _ (XTX + )\I)ilXTXBOLS,
~ (N + )\I)_lNEBOLS, for large N,
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Both estimated ridge coefficients are thus weighted sums of the estimated OLS
coefficients when the correlation is different from zero. The weight for the “correct”
OLS coefficient of the corresponding ridge coefficient (1+ M, — p?), does not depend
on the sign of p, while the weight of other “wrong” OLS coefficient, \,p, does.
Hence, if p > 0, the weight of the “wrong” OLS coefficient A, p will be positive and
ridge estimates are shrunken toward each other (as a type of weighted mean).

(¢) From the previous exercises, there are two key characteristics:

(1) Variable selection: Lasso does variable selection setting some [ estimates ex-
actly to zero, while in ridge the §’s for all variables are non-zero.

(73) Correlated variables: The lasso penalty is somewhat indifferent to the choice
among a set of strong but correlated variables (Hastie et al. p 71/662). The
ridge penalty, on the other hand, tends to shrink the coefficients of correlated
variables toward each other.



(a)

The elastic-net will have the best of these two characteristics and selects variables
like the lasso, but shrinks the coefficients of correlated predictors towards each
other like the ridge. It also has considerable computational advantages over the
L,,0 < g < 2 penalties.

Problem 3 Solution

Description of K-fold cross-validation in Lasso from lecture notes (lecture Sept 7th):

(1) Divide the N training data randomly into K groups, Gi,k = 1,..., K (ap-
proximately n/K observations in each)

(77) For a specific value of A:
e Leave out group k and estimate /6(/\71@ from the remaining data
e predict the response in the kth group by ﬁ(’\_k)Xi,i € Gy(groupk),
e repeat for k=1,..., K,

(77i) calculate a prediction error PE over all data

PEO) =33 (v — XTBly)"

k i€Gg

Find the PE()\) over a grid of A’s and select the A with lowest PE (or the largest
A less than one standard deviation away form the minimum.

2-fold CV uses less data to predict the removed fold compared to LOOCV and will
therefore have higher bias. 2-fold CV has no overlap between the two folds and
LOOCYV will have almost complete overlap. Hence LOOCV will have highly corre-
lated prediction giving large variance while 2-fold CV has uncorrelated predictions
giving low variance.

LOOCYV will be more computationally intensive than 2-fold CV, but will not vary
according to the random fold division.

Problem 4 Solution

(1) Boosting is forward stagewise additive modeling, fitting an additive expan-
sion of simple basis functions (base learner) by sequentially adding new basis
functions without adjusting the parameters and coefficients of those that have
already been added. For squared error loss the basis function explaining the
current residual is added at each iteration. (Hastie et al., 2009 p. 342-343,
lecture slides 9th November). Tree boosting grows trees in an adaptive way to
remove bias and with a small learning rate (shrinkage) will slowly search the
feature space (Hastie et al. 2009, p. 588).

(11) Bagging (bootstrap aggregation) can only lower variance through averaging
over bootstrap samples and requires nonlinear, unstable/high variance and
low-bias predictors to achieve variance reduction. Bias remains the same in
original and bagged predictors, while variance may decrease.
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(b)

The performance of standard tree bagging (bootstrap aggregation) is restricted by
the correlation between bootstrap trees. Random forests aim to decorrelate/reduce
correlation between bootstrapped trees, without increasing variance, and does so
by selecting m candidate variables randomly in each step of the binary partition of
the tree. m can be small, typically \/p or p/3.

The code missing for the AdaBoost algoritm:

2(a) Fit a classifier G,,(z) to the training data using weights w;
2(d) Set w; — w; * explag, - I(y; # Gu(x;))],

3 Output G(z) = sign[> 1, mGom(z)]
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