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Problem 1.

(a) We have that

Err(x0) =E[(Y − f̂(x0))
2|x = x0]

=E[(Y − f(x0) + f(x0) − E(f̂(x0)) + E(f̂(x0)) − f̂(x0))
2|x = x0]

=E[(Y − f(x0))
2|x = x0] + E[(f(x0) − E(f̂(x0)))

2|x = x0]+

E[(E(f̂(x0) − f̂(x0)))
2|x = x0]+

2E[(Y − f(x0))(f(x0) − E(f̂(x0)))|x = x0]+

2E[(Y − f(x0))(E(f̂(x0) − f̂(x0)))|x = x0]+

2E[(f(x0) − E(f̂(x0)))(E(f̂(x0) − f̂(x0)))|x = x0]

=E[(Y − f(x0))
2|x = x0] + E[(f(x0) − E(f̂(x0)))

2|x = x0]+

E[(E(f̂(x0) − f̂(x0)))
2|x = x0]

where we have used that f̂(x0) is independent of a new observation Y
and that f(x0) − E(f̂(x0)) is just a constant. Since

E[(Y − f(x0))
2|x = x0] =σ2

ε ,

E(f̂(x0)) − f(x0) =Bias(f̂(x0)),

(Continued on page 2.)
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and

E[(E(f̂(x0)) − f̂(x0))
2|x = x0] =Var(f̂(x0)),

the result follow.

This result shows that

• It is never possible to get a prediction error smaller than the vari-
ance of the noise.

• The two other terms are related to how well we are able to estimate
f̂(x0) and show that we can divide this part into one part corre-
sponding to bias and one part corresponding to the variability in
the estimate. Usually there will be a tradeoff between bias and
variance, i.e. more complex models can reduce bias but increase
variance due to limited data.

(b) Define

lridge(β) =
N∑

i=1

(yi − β0 −

p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2
j

We have

∂

∂β0
lridge(β) = − 2

N∑

i=1

(yi − β0 − 2

p∑

j=1

xijβj)

= − 2

N∑

i=1

yi + 2Nβ0

giving β̂0 = ȳ.

Further, for j > 0,

∂

∂βl

lridge(β) = − 2
N∑

i=1

(yi − β0 −

p∑

j=1

xijβj)xil + 2λβl

= − 2
N∑

i=1

yixil + 2β0

N∑

i=1

xil + 2

p∑

j=1

βj

N∑

i=1

xijxil + 2λβl

= − 2

N∑

i=1

yixil + 2βl

N∑

i=1

x2
il + 2λβl

giving β̂l =
∑N

i=1 yixil/[λ +
∑N

i=1 x2
il].

We see that the β̂j’s are shrinked towards zero compared to the OLS
estimates.

This term penalise large βj values. By shrinking the estimates, we
obtain less variability, but this can result in higher bias.

(Continued on page 3.)
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Problem 2.

(a) Overfitting is a serious problem when performing estimation using com-
plex models. Using the same data both to fit the model and to evaluate
its performance will typically give a too optimistic estimate on the pre-
diction/classification performance.

The usual way to avoid this is to put aside a part of the dataset that
is not to be used for estimation but only for testing the performance,
i.e. the test set. The set used for doing the estimation is called the
training set.

For many methods, there are tuning (penalty/shrinkage/complexity)
parameters that need to be specified or models to be selected. Using
the training set to specify these turning parameters will have the same
problems with overfitting. On the other hand, using the test set for
this, will lead to no data that can evaluate the final selected model. A
way to obtain this is to define a separate validation set for selecting
tuning parameters.

For small datasets, such a split can be problematic in that neither of
the datasets will be large enough for doing their task (estimation or
validation).

(b) Cross-validation is a method which utilises the data much better. Typ-
ically it is used for avoiding a split between training and validation. In
this case the training set is split into K, say, parts. K − 1 of these
parts are used for estimation while the last part is used for validation.
By looping through all the K possible parts that can be used for val-
idation, we obtain a validation based on the whole training set, while
each estimation is based on a fraction (K − 1)/K of the training set.

Problem 3.

(a) We have Likelihood

L =

n∏

i=1

pm(x),yi

(Continued on page 4.)
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giving log-likelihood

l =

n∑

i=1

log pm(x),yi

=

n∑

i=1

M∑

m=1

K∑

k=1

log pm,kI(xi ∈ Rm, yi = k)

=

M∑

m=1

K∑

k=1

log pm,k

n∑

i=1

I(xi ∈ Rm, yi = k)

=
M∑

m=1

K∑

k=1

log pm,kNm,k

which shows that maximizing the log-likelihood corresponds to mini-
mizing Q.

(b) p̂m,k is fraction of observations within region Rm that belongs to class
k and is both an unbiased and the maximum likelihood estimate (given
the regions) for pm,k.

Inserting p̂m,k, we get

Q = −

M∑

m=1

K∑

k=1

Nmp̂m,k log p̂m,k

=
M∑

m=1

NmQm(T )

where

Qm(T ) = −

K∑

k=1

p̂m,k log p̂m,k

This corresponds to the cross-entropy or deviance measure used for
classification trees.

(c) Searching for regions Rm is a difficult task due to the many possibilities
in how this can be done. The great flexibility also increase the possibil-
ity of overfitting. By using a tree structure where regions are defined by
sequential splits, the possibilities of regions are significantly reduced.
By further restricting the splits to only depend on one variable at a
time, this is further reduced.

Another benefit in this tree-structure splitting is that we get a readable
model.

END


