UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: STK4030 — Statistical Learning:

Advanced Regression and Classification

Day of examination: Friday 11th of December

Examination hours: 14.30 – 18.30 This problem set consists of 4 pages.

Appendices: None

Permitted aids: Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Penalized regression

A linear regression model with no intercept and two input variables is given as

$$f(x) = x_1\beta_1 + x_2\beta_2 + \epsilon.$$

The figure below shows profiles of different coefficient estimates as the tuning parameter varies between 0 and ∞ . Five linear regression methods are shown: partial least squares (PLS), principal component regression (PCR) and best subset regression and two methods from the curriculum. The ordinary least squares (OLS) solution is shown by the point $(\hat{\beta}_1^{OLS}, \hat{\beta}_2^{OLS}) = (4,2)$ as OLS has no tuning parameter.

 \mathbf{a}

The unmarked paths are given by two penalized regression methods with different penalties. Specify the methods 1 and 2 and give the penalized residual sum of square (PRSS) for each.

b

Explain shortly in terms of the penalties why their paths are different. Which characteristic does method 1 exhibit?

Problem 2 Ridge regression

This problem will explore how ridge regression handles correlated inputs.

Consider two correlated inputs $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ with expectation zero and covariance matrix $\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$ and an output Y given by a linear regression model with no intercept

$$Y = X^T \boldsymbol{\beta} + \epsilon$$
, where $\boldsymbol{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$.

For N observations and p inputs, the ridge regression solution is given by the data matrix X and response vector y as

$$oldsymbol{\hat{eta}}^{ridge} = egin{bmatrix} \hat{eta}^{ridge}_1 \ \hat{eta}^{ridge}_2 \end{bmatrix} = (oldsymbol{X}^Toldsymbol{X} + \lambda oldsymbol{I})^{-1}oldsymbol{X}^Toldsymbol{y}$$

 \mathbf{a}

Show that

$$\hat{m{eta}}^{ridge} = m{A}\hat{m{eta}}^{OLS}$$

where A is a matrix depending on X and λ , meaning that the ridge solution is linear combination of the OLS solution.

b

For a large number of observations N, one can simplify calculations by using the following approximation

$$\mathbf{X}^T \mathbf{X} \simeq N \Sigma.$$

Find approximate expressions of the ridge coefficients $\hat{\beta}_1^{ridge}$ and $\hat{\beta}_2^{ridge}$ for large N, as weighted sums of $\hat{\beta}_1^{OLS}$ and $\hat{\beta}_2^{OLS}$ where the weights depend on ρ, λ and N.

In the case of $\rho > 0$, how will ridge regression shrink the regression coefficients?

Note: the inverse of a 2×2 matrix is given

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

(Continued on page 3.)

 \mathbf{c}

The elastic net method combines the lasso and ridge penalty:

$$PRSS^{elastic}_{\lambda,\alpha}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda (1-\alpha) \sum_{j=1}^{p} |\beta_j| + \lambda \alpha \sum_{j=1}^{p} \beta_j^2.$$

Explain how this combination improves on the separate methods.

Problem 3 Crossvalidation

 \mathbf{a}

Describe in detail how k-fold crossvalidation is used to select a tuning parameter, for instance λ in lasso regression.

b

How and why will the crossvalidation prediction error of 2-fold and N-fold (leave-one-out) crossvalidation (as an estimate of the true prediction error) differ in terms of bias and variance? Give two other aspects to consider when choosing the number of folds in crossvalidation.

Problem 4 Boosting and bagging

a

Describe shortly the main concept behind

- i) boosting
- ii) bagging

b

In which way does the random forest method aim to improve on standard tree bagging? Which step of the tree bagging algorithm is modified to achieve this?

c AdaBoost

The algorithm below shows the boosting classification algorithm AdaBoost.M1, which considers responses $Y \in \{-1, 1\}$ with an exponential loss function and a general base classifier $G_m(x)$.

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a)
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[$

$$], i = 1, 2, \dots, N.$$

3. Output $G(x) = \text{sign} \left[\right]$

Give a description of the missing step in line 2(a) and give the two missing expressions in line 2(d) and 3.

SLUTT