UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK9030 - Statistical Learning: Advanced Regression and Classification
Day of examination:	Friday 11th of December
Examination hours:	$14.30-18.30$
This problem set consists of 4 pages.	
Appendices:	None
Permitted aids:	Approved calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Penalized regression

A linear regression model with no intercept and two input variables is given as

$$
f(x)=x_{1} \beta_{1}+x_{2} \beta_{2}+\epsilon
$$

The figure below shows profiles of different coefficient estimates as the tuning parameter varies between 0 and ∞. Five linear regression methods are shown: partial least squares (PLS), principal component regression (PCR) and best subset regression and two methods from the curriculum. The ordinary least squares (OLS) solution is shown by the point $\left(\hat{\beta}_{1}^{O L S}, \hat{\beta}_{2}^{O L S}\right)=$ $(4,2)$ as OLS has no tuning parameter.

$$
\rho=0.5
$$

a

The unmarked paths are given by two penalized regression methods with different penalties. Specify the methods 1 and 2 and give the penalized residual sum of square (PRSS) for each.

b

Explain shortly in terms of the penalties why their paths are different. Which characteristic does method 1 exhibit?

Problem 2 Ridge regression

This problem will explore how ridge regression handles correlated inputs.
Consider two correlated inputs $X=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ with expectation zero and covariance matrix $\Sigma=\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right]$ and an output Y given by a linear regression model with no intercept

$$
Y=X^{T} \boldsymbol{\beta}+\epsilon, \text { where } \boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right] .
$$

For N observations and p inputs, the ridge regression solution is given by the data matrix \boldsymbol{X} and response vector \boldsymbol{y} as

$$
\hat{\boldsymbol{\beta}}^{\text {ridge }}=\left[\begin{array}{c}
\hat{\beta}_{1}^{\text {ridge }} \\
\hat{\beta}_{2}^{\text {ridge }}
\end{array}\right]=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

a
Show that

$$
\hat{\boldsymbol{\beta}}^{\text {ridge }}=\boldsymbol{A} \hat{\boldsymbol{\beta}}^{O L S}
$$

where \boldsymbol{A} is a matrix depending on \boldsymbol{X} and λ, meaning that the ridge solution is linear combination of the OLS solution.

b

For a large number of observations N, one can simplify calculations by using the following approximation

$$
\begin{equation*}
\boldsymbol{X}^{T} \boldsymbol{X} \simeq N \Sigma \tag{1}
\end{equation*}
$$

Find approximate expressions of the ridge coefficients $\hat{\beta}_{1}^{\text {ridge }}$ and $\hat{\beta}_{2}^{\text {ridge }}$ for large N, as weighted sums of $\hat{\beta}_{1}^{O L S}$ and $\hat{\beta}_{2}^{O L S}$ where the weights depend on ρ, λ and N.

In the case of $\rho>0$, how will ridge regression shrink the regression coefficients?

Note: the inverse of a 2×2 matrix is given

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

(Continued on page 3.)

c

The elastic net method combines the lasso and ridge penalty:

$$
\operatorname{PRS} S_{\lambda, \alpha}^{\text {elastic }}(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda(1-\alpha) \sum_{j=1}^{p}\left|\beta_{j}\right|+\lambda \alpha \sum_{j=1}^{p} \beta_{j}^{2}
$$

Explain how this combination improves on the separate methods.

Problem 3 Crossvalidation

Describe in detail how k-fold crossvalidation is used to select a tuning parameter, for instance λ in lasso regression.

Problem 4 Principal components

The singular value decomposition of a design matrix is given $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$, where $\boldsymbol{V}^{T} \boldsymbol{V}=I$ and $\boldsymbol{U}^{T} \boldsymbol{U}=I$. The columns of $\boldsymbol{U}, \boldsymbol{u}_{i}$, are referred to as the principal component directions.

a

Express the ridge and PCR predictions $\hat{\boldsymbol{y}}_{\lambda}^{\text {ridge }}=\boldsymbol{X} \hat{\boldsymbol{\beta}}_{\lambda}^{\text {ridge }}$ and $\hat{\boldsymbol{y}}_{m}^{P C R}=$ $\boldsymbol{X} \hat{\boldsymbol{\beta}}_{m}^{P C R}$ in terms of $\boldsymbol{y}, \boldsymbol{u}_{i}, \boldsymbol{d}_{i}$ and their respective tuning parameters.

b

Explain how the ridge and PCR predictions shrink the quantity $\boldsymbol{u}_{i} \boldsymbol{u}_{i}^{T} \boldsymbol{y}$ differently. Sketch for instance a figure showing the shrinkage factor as a function of the principal component index (the column number i).

Problem 5 Boosting and bagging

a

Describe shortly the main concept behind
i) boosting
ii) bagging

b

In which way does the random forest method aim to improve on standard tree bagging? Which step of the tree bagging algorithm is modified to achieve this?

c AdaBoost

The algorithm below shows the boosting classification algorithm AdaBoost.M1, which considers responses $Y \in\{-1,1\}$ with an exponential loss function and a general base classifier $G_{m}(x)$.

```
Algorithm 10.1 AdaBoost.M1.
    1. Initialize the observation weights \(w_{i}=1 / N, i=1,2, \ldots, N\).
    2. For \(m=1\) to \(M\) :
(a)
(b) Compute
\[
\operatorname{err}_{m}=\frac{\sum_{i=1}^{N} w_{i} I\left(y_{i} \neq G_{m}\left(x_{i}\right)\right)}{\sum_{i=1}^{N} w_{i}}
\]
(c) Compute \(\alpha_{m}=\log \left(\left(1-\operatorname{err}_{m}\right) / \operatorname{err}_{m}\right)\).
(d) Set \(w_{i} \leftarrow w_{i} \cdot \exp [\quad], i=1,2, \ldots, N\).
3. Output \(G(x)=\operatorname{sign}[\square\).
```

Give a description of the missing step in line $2(a)$ and give the two missing expressions in line $2(d)$ and 3 .

