Exercises, STK4040, week 41

October 5, 2007

Exercise 1

Assume that the stochastic vector \boldsymbol{x} has dimension 5, and that it can be written as $\boldsymbol{x}=\mathrm{A} \boldsymbol{v}+\boldsymbol{e}$, where \boldsymbol{v} is a stochastic vector with dimension 2, A is an arbitrary matrix, and \boldsymbol{e} is a stochastic vector of the same dimension as \boldsymbol{x}, independent of \boldsymbol{v}. Let the matrix A be defined as

$$
\mathrm{A}=\left(\begin{array}{cc}
1 & -1 \\
2 & 2 \\
3 & 0 \\
2 & -2 \\
1 & 1
\end{array}\right)
$$

The vector \boldsymbol{e} is assumed to have $\mathrm{E}(\boldsymbol{e})=\mathbf{0}$, and $\Phi=\operatorname{Cov}(\boldsymbol{e})$ is assumed to be diagonal with all diagonal elements equal to 0.1. The stochastic vector \boldsymbol{v} is also assumed to have expectation $\mathbf{0}$, and $\Theta=\operatorname{Cov}(\boldsymbol{v})=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$.

Write the covariance matrix of $\boldsymbol{x}(\Sigma)$. Show that the coloumns of A are Eigenvectors of Σ.

Now assume that \boldsymbol{v} and \boldsymbol{e} are Normally distributed. Simulate 15 independent observations of the vector \boldsymbol{x} and place them in a 15 by 5 data matrix X.

Perform a principal component analysis of X. Make a score plot for the two first components, and plot the two first loading vectors. Compare the loading vectors with the matrix A. Are there any similarities? Differences? Comment!

Exercise 2

Assume we have a data matrix X . Let the spectral decomposition of $\mathrm{X}^{T} \mathrm{X}$ be VLV^{T}. Show that the inverse of $\mathrm{X}^{T} \mathrm{X}$ (if it exists) can be written as $\mathrm{VL}^{-1} \mathrm{~V}^{T}$. How does L^{-1} look?

Exercise 3

Let $\boldsymbol{x} \sim N_{2}(\mu, \Sigma)$ and $\boldsymbol{y} \sim N_{2}(\nu, \Sigma)$, where $\mu=(0,0)^{T}, \nu=(1,1)^{T}$ and $\Sigma=\left(\begin{array}{cc}3 & -1 \\ -1 & 4\end{array}\right)$.

Draw $m=13$ observations of \boldsymbol{x} and $n=17$ observations of \boldsymbol{y}, and perform a (two-sample) Hotelling's T^{2} test to test the hypothesis $H_{0}: \mu=\nu$ against the alternative hypothesis $H_{A}: \mu \neq \nu$.

