Exercises, STK4040, week 41

October 5, 2007

Exercise 1

Assume that the stochastic vector \boldsymbol{x} has dimension 5, and that it can be written as $\boldsymbol{x} = A\boldsymbol{v} + \boldsymbol{e}$, where \boldsymbol{v} is a stochastic vector with dimension 2, A is an arbitrary matrix, and \boldsymbol{e} is a stochastic vector of the same dimension as \boldsymbol{x} , independent of \boldsymbol{v} . Let the matrix A be defined as

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 3 & 0 \\ 2 & -2 \\ 1 & 1 \end{pmatrix}.$$

The vector \boldsymbol{e} is assumed to have $\mathsf{E}(\boldsymbol{e}) = \mathbf{0}$, and $\Phi = \operatorname{Cov}(\boldsymbol{e})$ is assumed to be diagonal with all diagonal elements equal to 0.1. The stochastic vector \boldsymbol{v} is also assumed to have expectation $\mathbf{0}$, and $\Theta = \operatorname{Cov}(\boldsymbol{v}) = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

Write the covariance matrix of \boldsymbol{x} (Σ). Show that the coloumns of A are Eigenvectors of Σ .

Now assume that \boldsymbol{v} and \boldsymbol{e} are Normally distributed. Simulate 15 independent observations of the vector \boldsymbol{x} and place them in a 15 by 5 data matrix X.

Perform a principal component analysis of X. Make a score plot for the two first components, and plot the two first loading vectors. Compare the loading vectors with the matrix A. Are there any similarities? Differences? Comment!

Exercise 2

Assume we have a data matrix X. Let the spectral decomposition of $X^T X$ be VLV^T . Show that the inverse of $X^T X$ (if it exists) can be written as $VL^{-1}V^T$. How does L^{-1} look?

Exercise 3

Let $\boldsymbol{x} \sim N_2(\mu, \Sigma)$ and $\boldsymbol{y} \sim N_2(\nu, \Sigma)$, where $\mu = (0, 0)^T$, $\nu = (1, 1)^T$ and $\Sigma = \begin{pmatrix} 3 & -1 \\ -1 & 4 \end{pmatrix}$. Draw m = 13 observations of \boldsymbol{x} and n = 17 observations of \boldsymbol{y} , and perform a (two-sample) Hotelling's T^2 test to test the hypothesis $H_0: \mu = \nu$ against the alternative hypothesis $H_A: \mu \neq \nu$.