Exercises, STK4040, week 42

October 11, 2007

Exercise 1

Consider the linear model $\boldsymbol{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. We assume that the $n \times (p+1)$ matrix X has full rank p+1 < n, and that the first coloumn of X is $\mathbf{1}_n$.

The least squares estimate of β is $\hat{\beta} = (X^T X)^{-1} X^T y$. The predicted response values (A.K.A. fitted values) are $\hat{y} = X\hat{\beta}$. Let $H = X(X^T X)^{-1} X^T$. Then the predicted response values can be written as $\hat{y} = Hy$. (H is often called the 'hat matrix', because it transforms y into \hat{y} .) The residuals are given by $\hat{\varepsilon} = y - \hat{y} = (I - H)y$. Define M = I - H. Then $\hat{\varepsilon} = My$.

Prove the following:

- 1. H is idempotent (i.e., HH = H) and symmetric.
- 2. M is idempotent and symmetric.
- 3. MX = 0, and $M1_n = 0$.
- 4. $\hat{\varepsilon} = M\varepsilon$, $X^T \hat{\varepsilon} = \mathbf{0}$, and $\sum_{i=1}^n \hat{\varepsilon}_i = 0$.
- 5. $\hat{\boldsymbol{y}}^T \hat{\varepsilon} = 0.$
- 6. $\mathbf{1}_n^T \hat{\varepsilon} = 0.$

Exercise 2

Given the linear model $\boldsymbol{y} = X_1\beta + X_2\varphi + \varepsilon$, where $\varepsilon \sim N_n(\boldsymbol{0}, \sigma^2 \mathbf{I}_n)$, and $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ has full rank.

Show that $\hat{\beta}$ can be calculated by first regressing \boldsymbol{y} and X_1 onto X_2 , and then regress the residuals of \boldsymbol{y} onto the residuals of X_1 .

Exercise 3

The file dataset_42.txt contains sensory data from an experiment in which 105 persons tasted 6 different cheeses. Each person has given each cheese an integer score between 1 and 9, denoting how well they liked the cheese (9 is best and 1 is worst).

The file contains a variable Code, giving the sex of the person (A for female and B for male), and one variable for each cheese: A_Cow_Full_fat, C_Cow_Full_fat, D_Cow_Low_fat, E_Cow_Low_fat, G_Buffalo_Full_fat, and I_Buffalo_Full_fat. The cheeses A, C, D, and E are made from cow milk, while G and I are made from buffalo milk. The cheeses A, C, G, and I have regular fat content, while D and E are low fat cheeses.

Do a principal component analysis of the liking scores. How many components are important? Plot loadings and scores, and see if you can find any patterns. Tip: the data can be read in and set up in **R** like this:

```
tmp <- read.table("dataset_42.txt")
names(tmp)
Code <- tmp$Code
X <- as.matrix(tmp[,2:7])</pre>
```

Plot the scores with codes and/or colours to denote sex. Do you see a pattern now? Interpret the loadings. (Tip: You can plot the codes by using the argument pch = as.character(Code)) in the plot function, and colours can be added with the argument col = as.numeric(Code).)