Exercises, STK4040, week 44

October 26, 2007

Exercise 1

Do exercise 6.5.5 in the book.

Exercise 2

Let X be an $n \times p$ matrix of rank r, and \boldsymbol{y} an n vector. Assume that both X an \boldsymbol{y} are centered. Let $\mathrm{X}^{T} \mathrm{X}=\mathrm{VLV}^{T}$ be the Eigenvalue decomposition of $\mathrm{X}^{T} \mathrm{X}$, with Eigenvalues $l_{1} \geq l_{2} \geq \cdots \geq l_{r}>l_{r+1}=\cdots=0$. (If $r=p$, all Eigenvalues are positive.) Let L^{-}be a $p \times p$ diagonal matrix with $1 / l_{1}, 1 / l_{2}$, $\ldots, 1 / l_{r}, 0, \ldots, 0$ along the diagonal.

Show that whether $r=p$ or $r<p$ (for instance if $p>n$),

$$
\begin{equation*}
\boldsymbol{b}=\mathrm{VL}^{-} \mathrm{V}^{T} \mathrm{X}^{T} \boldsymbol{y} \tag{1}
\end{equation*}
$$

is a solution to the normal equations $\mathrm{X}^{T} \mathrm{X} \beta=\mathrm{X}^{T} \boldsymbol{y}$.

