Exercises, STK4040, week 44

October 26, 2007

Exercise 1

Do exercise 6.5.5 in the book.

Exercise 2

Let X be an $n \times p$ matrix of rank r, and \boldsymbol{y} an n vector. Assume that both X an \boldsymbol{y} are centered. Let $X^T X = VLV^T$ be the Eigenvalue decomposition of $X^T X$, with Eigenvalues $l_1 \geq l_2 \geq \cdots \geq l_r > l_{r+1} = \cdots = 0$. (If r = p, all Eigenvalues are positive.) Let L^- be a $p \times p$ diagonal matrix with $1/l_1$, $1/l_2$, \ldots , $1/l_r$, $0, \ldots, 0$ along the diagonal.

Show that whether r = p or r < p (for instance if p > n),

$$\boldsymbol{b} = \mathbf{V}\mathbf{L}^{-}\mathbf{V}^{T}\mathbf{X}^{T}\boldsymbol{y} \tag{1}$$

is a solution to the normal equations $\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \boldsymbol{y}$.