Exercises, STK4040, week 45

November 5, 2007

Exercise 1: MSE

Let f be a regression trained (estimated) on a data set X and y, and let $\hat{y} = f(x)$ be the predicted response value for a given new observation x. Show that

$$MSE(\hat{y}) = Bias^2(\hat{y}) + Var(\hat{y} - Y), \qquad (1)$$

where Y is (the unknown) response value corresponding to \boldsymbol{x} . (We treat X and \boldsymbol{x} as given.) Note that this is true for regressions in general; we have not assumed anything about the shape of f (for instance that is should be a linear regression).

Exercise 2: leverage

Assume the model

$$\boldsymbol{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{2}$$

where X is known and $\boldsymbol{\varepsilon} \sim N_n(0, \sigma^2 \mathbf{I})$.

Given a data set X and \boldsymbol{y} . Let $e_i = y_i - \hat{y}_i$ be the residuals from a linear regression of \boldsymbol{y} onto X. Let h_i be the diagonal entries of the 'hat matrix' $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$. h_i is called the 'leverage' of \boldsymbol{x}_i , and is a measure of how much \boldsymbol{x}_i potentially can affect the regression. Note that $h_i = \boldsymbol{x}_i^T(\mathbf{X}^T\mathbf{X})^{-1}\boldsymbol{x}_i$.

Let $X_{(i)}$ and $y_{(i)}$ be X and y with the *i*th observation removed, and let $b_{(i)}$ be the estimate of β using $X_{(i)}$ and $y_{(i)}$. Show that

$$e_{(i)} = y_i - \boldsymbol{x}_i^T \boldsymbol{b}_{(i)} = e_i / (1 - h_i).$$
 (3)

(In other words: one can calculate the residuals from a full cross-validation (A.K.A. leave one out cross-validation) of a linear regression withoug having to refit the regression for each observation.)

Tip: to save a bit of calculation, you can use the fact that

$$(\mathbf{X}_{(i)}^T \mathbf{X}_{(i)})^{-1} = (\mathbf{X}^T \mathbf{X})^{-1} + \frac{(\mathbf{X}^T \mathbf{X})^{-1} \boldsymbol{x}_i \boldsymbol{x}_i^T (\mathbf{X}^T \mathbf{X})^{-1}}{1 - h_i}.$$
 (4)

(Extra exercise: Use the fact that $X_{(i)}^T X_{(i)} = X^T X - \boldsymbol{x}_i \boldsymbol{x}_i^T$ to show (4).)

b)

Assume that $X = (1 X_1)$ in (2). Let X_c and y_c be X_1 and y centered, and let $y_c = X_c \beta_c + \varepsilon$ be the corresponding centered model. Call the leverages for this model g_i , and show that

$$h_i = g_i + 1/n,\tag{5}$$

where *n* is the number of observations, and h_i are the leverages for the observations in model (2). (Tip: Note that if we write the observations in model (2) as $\begin{pmatrix} 1 & x_i \end{pmatrix}$, then the corresponding observations in the centered model can be written as $\boldsymbol{x}_i - \bar{\boldsymbol{x}}$, where $\bar{\boldsymbol{x}}$ is the coloumn means of X₁.)