Solution hints, STK4040, week 45

Bjørn-Helge Mevik

November 5, 2007

Exercise 1

We have that

$$
\begin{align*}
\operatorname{MSE}(\hat{y}) & =\mathrm{E}\left[(\hat{y}-Y)^{2}\right] \tag{1}\\
& =\mathrm{E}\left[\hat{y}^{2}\right]-2 \mathrm{E}[\hat{y} Y]+\mathrm{E}\left[Y^{2}\right] \tag{2}\\
& =\mathrm{E}\left[\hat{y}^{2}\right]-2 \mathrm{E} \hat{y} \mathrm{E} Y+\mathrm{E}\left[Y^{2}\right], \tag{3}
\end{align*}
$$

where the last equality is true because Y and \hat{y} are independent, given \boldsymbol{x}. Further,

$$
\begin{align*}
\operatorname{Bias}^{2}(\hat{y}) & =(E[\hat{y}-Y])^{2}=(\mathrm{E} \hat{y}-\mathrm{E} Y)^{2} \tag{4}\\
& =(\mathrm{E} \hat{y})^{2}-2 \mathrm{E} \hat{y} \mathrm{E} Y+(\mathrm{E} Y)^{2} \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{Var}(\hat{y}-Y) & =\operatorname{Var}(\hat{y})-2 \operatorname{Cov}(\hat{y}, Y)+\operatorname{Var}(Y) \tag{6}\\
& =\operatorname{Var}(\hat{y})+\operatorname{Var}(Y) \tag{7}\\
& =\mathrm{E}\left[(\hat{y}-\mathrm{E} \hat{y})^{2}\right]+\mathrm{E}\left[(Y-\mathrm{E} Y)^{2}\right] \tag{8}\\
& =\mathrm{E}\left[\hat{y}^{2}\right]-(\mathrm{E} \hat{y})^{2}+\mathrm{E}\left[Y^{2}\right]-(\mathrm{E} Y)^{2} . \tag{9}
\end{align*}
$$

We then see that $\operatorname{MSE}(\hat{y})=\operatorname{Bias}^{2}(\hat{y})+\operatorname{Var}(\hat{y}-Y)$.

Exercise 2a)

To calculate $e_{(i)}$, we need $\boldsymbol{b}_{(i)}$. We have that $\boldsymbol{b}_{(i)}=\left(\mathrm{X}_{(i)}^{T} \mathrm{X}_{(i)}\right)^{-1} \mathrm{X}_{(i)}^{T} \boldsymbol{y}_{(i)}$. The first part of this exression (the inverse) is given in the exercise. The last part

$$
\begin{align*}
\mathrm{X}_{(i)}^{T} \boldsymbol{y}_{(i)} & =\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i-1}, \boldsymbol{x}_{i+1}, \ldots, \boldsymbol{x}_{n}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{i-1} \\
y_{i+1} \\
\vdots \\
y_{n}
\end{array}\right)\right. \tag{10}\\
& =\boldsymbol{x}_{1} y_{1}+\cdots+\boldsymbol{x}_{i-1} y_{i-1}+\boldsymbol{x}_{i+1} y_{i+1}+\cdots, \boldsymbol{x}_{n} y_{n} \tag{11}\\
& =\sum_{j \neq i} \boldsymbol{x}_{j} y_{j}=\sum_{j=1}^{n} \boldsymbol{x}_{j} y_{j}-\boldsymbol{x}_{i} y_{i} \tag{12}\\
& =\mathrm{X}^{T} \boldsymbol{y}-\boldsymbol{x}_{i} y_{i}, \tag{13}
\end{align*}
$$

so we get

$$
\begin{align*}
\boldsymbol{b}_{(i)}= & \left(\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1}+\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1}}{1-h_{i}}\right)\left(\mathrm{X}^{T} \boldsymbol{y}-\boldsymbol{x}_{i} y_{i}\right) \tag{14}\\
= & \left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T} \boldsymbol{y}-\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} y_{i} \tag{15}\\
& +\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T} \boldsymbol{y}}{1-h_{i}}-\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} y_{i}}{1-h_{i}} . \tag{16}
\end{align*}
$$

Now $\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \mathrm{X}^{T} \boldsymbol{y}=\boldsymbol{b}$ and $\boldsymbol{x}_{i}^{T}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i}=h_{i}$, so

$$
\begin{align*}
\boldsymbol{b}_{(i)} & =\boldsymbol{b}-\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} y_{i}+\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{b}}{1-h_{i}}-\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} h_{i} y_{i}}{1-h_{i}} \tag{17}\\
& =\boldsymbol{b}-\frac{\left(1-h_{i}\right)\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} y_{i}-\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{b}+h_{i}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} y_{i}}{1-h_{i}} \tag{18}\\
& =\boldsymbol{b}-\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} y_{i}-\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{b}}{1-h_{i}} \tag{19}\\
& =\boldsymbol{b}-\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i}\left(y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{b}\right)}{1-h_{i}} \tag{20}\\
& =\boldsymbol{b}-\frac{\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i}}{1-h_{i}} e_{i} . \tag{21}
\end{align*}
$$

Therefore

$$
\begin{align*}
e_{(i)} & =y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{b}_{(i)} \tag{23}\\
& =y_{i}-\boldsymbol{x}_{i}^{T} \boldsymbol{b}+\frac{\boldsymbol{x}_{i}^{T}\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} \boldsymbol{x}_{i}}{1-h_{i}} e_{i} \tag{24}\\
& =e_{i}+\frac{h_{i}}{1-h_{i}} e_{i} \tag{25}\\
& =\frac{1}{1-h_{i}} e_{i}, \tag{26}
\end{align*}
$$

which is what we wanted.

Exercise 2b)

The point is to show that $h_{i}=1 / n+\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)$, where $\overline{\boldsymbol{x}}$ is the coloumn means of $\mathrm{X}_{1} \cdot g_{i}=h_{i}-1 / n$ can thereby be interpreted as the leverages of a regression with centered variables.

Writing the observations of the uncentered model as $\left(\begin{array}{ll}1 & \boldsymbol{x}_{i}\end{array}\right)$, we get

$$
h_{i}=\left(\begin{array}{ll}
1 & \boldsymbol{x}_{i} \tag{27}
\end{array}\right)\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1}\binom{1}{\boldsymbol{x}_{i}}
$$

We have that

$$
\mathrm{X}^{T} \mathrm{X}=\binom{\mathbf{1}^{T}}{\mathrm{X}_{1}^{T}}\left(\begin{array}{ll}
\mathbf{1} & \mathrm{X}_{1}
\end{array}\right)=\left(\begin{array}{cc}
n & \mathbf{1}^{T} \mathrm{X}_{1} \tag{28}\\
\mathrm{X}_{1}^{T} \mathbf{1} & \mathrm{X}_{1}^{T} \mathrm{X}_{1}
\end{array}\right)=\left(\begin{array}{cc}
n & n \overline{\boldsymbol{x}}^{T} \\
n \overline{\boldsymbol{x}} & \mathrm{X}_{1}^{T} \mathrm{X}_{1}
\end{array}\right)
$$

By the help of A.2.4(VII) we then get that

$$
\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}^{T} \tag{29}\\
\mathbf{0} & 0
\end{array}\right)+\binom{-\frac{1}{n} n \overline{\boldsymbol{x}}^{T}}{\mathrm{I}}\left(\mathrm{X}_{1}^{T} \mathrm{X}_{1}-n \overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}\right)^{-1}\left(\begin{array}{ll}
-\frac{1}{n} n \overline{\boldsymbol{x}} & \mathrm{I}
\end{array}\right) .
$$

It is easy to show that $\mathrm{X}_{1}^{T} \mathrm{X}_{1}-n \overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}=\mathrm{X}_{c}^{T} \mathrm{X}_{c}$, so

$$
\begin{align*}
\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1} & =\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}^{T} \\
\mathbf{0} & 0
\end{array}\right)+\binom{-\overline{\boldsymbol{x}}^{T}}{\mathrm{I}}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1}\left(\begin{array}{ll}
-\overline{\boldsymbol{x}} & \mathrm{I}
\end{array}\right) \tag{30}\\
& =\left(\begin{array}{cc}
\frac{1}{n} & \mathbf{0}^{T} \\
\mathbf{0} & 0
\end{array}\right)+\binom{-\overline{\boldsymbol{x}}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1}}{\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1}}\left(\begin{array}{ll}
-\overline{\boldsymbol{x}} & \mathrm{I}
\end{array}\right) \tag{31}\\
& =\left(\begin{array}{cc}
\frac{1}{n}+\overline{\boldsymbol{x}}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \overline{\boldsymbol{x}} & -\overline{\boldsymbol{x}}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \\
-\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \overline{\boldsymbol{x}} & \left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1}
\end{array}\right) \tag{32}
\end{align*}
$$

This gives

$$
\begin{align*}
h_{i} & =\left(\begin{array}{ll}
1 & \boldsymbol{x}_{i}
\end{array}\right)\left(\mathrm{X}^{T} \mathrm{X}\right)^{-1}\binom{1}{\boldsymbol{x}_{i}} \tag{33}\\
& =\frac{1}{n}+\overline{\boldsymbol{x}}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \overline{\boldsymbol{x}}-\boldsymbol{x}_{i}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \overline{\boldsymbol{x}}-\overline{\boldsymbol{x}}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \boldsymbol{x}_{i}+\boldsymbol{x}_{i}^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \boldsymbol{x}_{i} \tag{34}
\end{align*}
$$

$$
\begin{equation*}
=\frac{1}{n}-\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \overline{\boldsymbol{x}}+\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1} \boldsymbol{x}_{i} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{n}+\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{T}\left(\mathrm{X}_{c}^{T} \mathrm{X}_{c}\right)^{-1}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right) \tag{36}
\end{equation*}
$$

