

FORMULAS FOR STK4040

This collection of formulas may be used at the written exam December 18th, 2009

A - Vectors and matrices

- A.1) For a $n \times k$ matrix **A** and a $k \times n$ matrix **B** we have $(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}'$.
- A.2) For nonsingular square matrices **A** and **B** we have $(\mathbf{A}^{-1})' = (\mathbf{A}')^{-1}$ and $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- A.3) A $k \times k$ matrix **Q** is *orthogonal* if $\mathbf{QQ'} = \mathbf{Q'Q} = \mathbf{I}$, i.e. if $\mathbf{Q}^{-1} = \mathbf{Q'}$.
- A.4) For $k \times k$ matrices **A** and **B** we have $|\mathbf{A}\mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$.
- A.5) For a diagonal matrix $\mathbf{A} = \text{diag}\{a_{11}, a_{22}, \dots, a_{kk}\}$ we have $|\mathbf{A}| = \prod_{i=1}^{n} a_{ii}$.
- A.6) Let **A** be a symmetric $k \times k$ matrix and **x** a k dimensional vector.

Then
$$\mathbf{x}'\mathbf{A}\mathbf{x} = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij} x_i x_j$$
 is denoted a *quadratic form*.

- A.7) A symmetric $k \times k$ matrix **A** is *nonnegative definite* if $\mathbf{x}' \mathbf{A} \times \mathbf{x} \ge 0$ for all k dimensional vectors \mathbf{x} . It is *positive definite* if $\mathbf{x}' \mathbf{A} \times \mathbf{x} > 0$ for all $\mathbf{x} \ne \mathbf{0}$.
- A.8) A $k \times k$ matrix **A** has eigenvalue λ with corresponding eigenvector $\mathbf{e} \neq \mathbf{0}$ if $\mathbf{A}\mathbf{e} = \lambda \mathbf{e}$.
- A.9) An eigenvalue λ is a solution to the *characteristic equation* $|\mathbf{A} \lambda \mathbf{I}| = 0$.
- A.10) For a $k \times k$ matrix **A** the *trace* is given by $tr(\mathbf{A}) = \sum_{i=1}^{k} a_{ii}$.
- A.11) tr(\mathbf{A}) = $\sum_{i=1}^{k} \lambda_i$ where the λ_i s are the eigenvalues of \mathbf{A} .
- A.12) For a $m \times k$ matrix **B** and a $k \times m$ matrix **C**, we have $tr(\mathbf{BC}) = tr(\mathbf{CB})$.

A.13) For a positive definite $k \times k$ matrix **A** we have the *spectral decomposition* $\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_k \mathbf{e}_k \mathbf{e}_k'$

Here $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$ are the eigenvalues of **A** and $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ are the corresponding orthogonal and normalized eigenvectors (i.e. $\mathbf{e}_i' \mathbf{e}_i = 1$ and $\mathbf{e}_i' \mathbf{e}_j = 0$ for $i \ne j$)

- A.14) For a positive definite $k \times k$ matrix \mathbf{A} , the square root matrix of \mathbf{A} and its inverse are defined as $\mathbf{A}^{1/2} = \sum_{i=1}^{k} \sqrt{\lambda_i} \, \mathbf{e}_i \mathbf{e}_i' \text{ and } \mathbf{A}^{-1/2} = \sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_i}} \, \mathbf{e}_i \mathbf{e}_i'.$
- A.15) Let **B** be a positive definite matrix and **d** be a given vector. Then for an arbitrary nonzero vector **x**, we have $\max_{\mathbf{x}\neq\mathbf{0}} \frac{(\mathbf{x}'\mathbf{d})^2}{\mathbf{x}'\mathbf{B}\mathbf{x}} = \mathbf{d}'\mathbf{B}^{-1}\mathbf{d}$ with the maximum attained when $\mathbf{x} = c\,\mathbf{B}^{-1}\mathbf{d}$ for any constant $c\neq 0$.
- A.16) Let **B** be a positive definite pxp matrix with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p > 0$ and corresponding orthogonal and normalized eigenvectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_p$. Then

$$\max_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}' \mathbf{B} \mathbf{x}}{\mathbf{x}' \mathbf{x}} = \lambda_1 \qquad \text{(attained when } \mathbf{x} = \mathbf{e}_1\text{)}$$

Moreover for j = 1, 2, ..., p-1

$$\max_{\mathbf{x} \perp \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_j} \frac{\mathbf{x}' \mathbf{B} \mathbf{x}}{\mathbf{x}' \mathbf{x}} = \lambda_{j+1} \quad \text{(attained when } \mathbf{x} = \mathbf{e}_{j+1})$$

A.17) Given a positive definite pxp matrix **B** and a scalar b > 0, we have

$$\frac{1}{\left|\boldsymbol{\Sigma}\right|^{b}} \exp\left(-\frac{1}{2} \operatorname{tr}\left[\boldsymbol{\Sigma}^{-1} \mathbf{B}\right]\right) \leq \frac{1}{\left|\mathbf{B}\right|^{b}} (2b)^{pb} e^{-bp}$$

for any positive definite $p \times p$ matrix Σ , with equality if and only if $\Sigma = (1/2b)\mathbf{B}$.

B - Random vectors and matrices

B.1) For random matrices \mathbf{X} and \mathbf{Y} of the same dimension, and \mathbf{A} and \mathbf{B} matrices of constants, we have that

$$E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$$
$$E(\mathbf{AXB}) = \mathbf{A} E(\mathbf{X}) \mathbf{B}$$

B.2) For a random vector \mathbf{X} with mean vector $\mathbf{\mu}$, the *covariance matrix* is given by

$$Cov(\mathbf{X}) = E\{(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'\}$$

B.3) For a random vector \mathbf{X} with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ and a matrix \mathbf{C} of constants, we have that $E(\mathbf{C}\mathbf{X}) = \mathbf{C}E(\mathbf{X}) = \mathbf{C}\boldsymbol{\mu}$ and $Cov(\mathbf{C}\mathbf{X}) = \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}'$.

2

B.4) Let ρ denote the correlation matrix. Then

$$\mathbf{V}^{1/2}\boldsymbol{\rho}\mathbf{V}^{1/2} = \boldsymbol{\Sigma} \quad \text{and} \quad \boldsymbol{\rho} = \mathbf{V}^{-1/2}\;\boldsymbol{\Sigma}\,\mathbf{V}^{-1/2}\;,$$
 where $\mathbf{V}^{1/2} = \mathrm{diag}\left(\sqrt{\sigma_{11}},\sqrt{\sigma_{22}},...,\sqrt{\sigma_{kk}}\;\right)$ is the standard deviation matrix.

C - The multivariate normal distribution and related distributions

C.1) A *p*-variate random vector \mathbf{X} with mean vector $\mathbf{\mu}$ and covariance matrix $\mathbf{\Sigma}$ is multivariate normally distributed, $\mathbf{X} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$, if its density takes the form

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \left| \mathbf{\Sigma} \right|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

- C.2) $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if and only if $\mathbf{a}' \mathbf{X} \sim N(\mathbf{a}' \boldsymbol{\mu}, \mathbf{a}' \boldsymbol{\Sigma} \mathbf{a})$ for all p-dimensional vectors \mathbf{a} .
- C.3) Let $\mathbf{X} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$, then the probability is $1-\alpha$ that \mathbf{X} takes values in the ellipsoid $\left\{\mathbf{x}: (\mathbf{x}-\mathbf{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x}-\mathbf{\mu}) \leq \chi_p^2(\alpha)\right\}$
- C.4) Let $\mathbf{X} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$, and let \mathbf{A} be a $q \times p$ matrix and \mathbf{d} a q-dimensional vector. Then $\mathbf{A}\mathbf{X} + \mathbf{d} \sim N_q(\mathbf{A}\mathbf{\mu} + \mathbf{d}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}')$
- C.5) Assume that $\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \sim N_p \begin{pmatrix} \begin{bmatrix} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \end{pmatrix}$, where \mathbf{X}_1 is a q dimensional vector. Then $\mathbf{X}_1 | \mathbf{X}_2 = \mathbf{x}_2 \sim N_q (\mathbf{\mu}_1 + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \mathbf{\mu}_2), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21})$
- C.6) Assume that $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ are independent, $\mathbf{X}_j \sim N_p(\boldsymbol{\mu}_j, \boldsymbol{\Sigma})$, and let $\mathbf{V}_1 = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \dots + c_n \mathbf{X}_n$ and $\mathbf{V}_2 = b_1 \mathbf{X}_1 + b_2 \mathbf{X}_2 + \dots + b_n \mathbf{X}_n$, where the c_j 's and b_j 's are constants. Then

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} \sim N_p \left(\begin{bmatrix} \sum_{j=1}^n c_j \boldsymbol{\mu}_j \\ \sum_{j=1}^n b_j \boldsymbol{\mu}_j \end{bmatrix}, \begin{bmatrix} \mathbf{c}' \mathbf{c} \boldsymbol{\Sigma} & \mathbf{b}' \mathbf{c} \boldsymbol{\Sigma} \\ \mathbf{b}' \mathbf{c} \boldsymbol{\Sigma} & \mathbf{b}' \mathbf{b} \boldsymbol{\Sigma} \end{bmatrix} \right)$$

- C.7) Assume that $\mathbf{Z}_1, ..., \mathbf{Z}_m$ are i.i.d. $N_p(\mathbf{0}, \mathbf{\Sigma})$. The distribution of $\sum_{j=1}^m \mathbf{Z}_j \mathbf{Z}_j'$ is called the Wishart distribution with m degrees of freedom (and pxp covariance matrix $\mathbf{\Sigma}$), denoted $W_{p,m}(\mathbf{\Sigma})$.
- C.8) Properties of the Wishart distribution:
 - If $\mathbf{W}_1 \sim W_{p,m_1}(\Sigma)$ and $\mathbf{W}_2 \sim W_{p,m_2}(\Sigma)$ are independent, then $\mathbf{W}_1 + \mathbf{W}_2 \sim W_{p,m_1+m_2}(\Sigma)$
 - If $\mathbf{W} \sim W_{p,m}(\mathbf{\Sigma})$ and \mathbf{C} is a $q \times p$ matrix, then $\mathbf{C} \mathbf{W} \mathbf{C}' \sim W_{q,m}(\mathbf{C} \mathbf{\Sigma} \mathbf{C}')$

C.9) Let $\mathbf{Z} \sim N_p(\mathbf{0}, \boldsymbol{\Sigma})$ and $\mathbf{W} \sim W_{p,m}(\boldsymbol{\Sigma})$ be independent.

Then
$$\mathbf{Z}'\left(\frac{\mathbf{W}}{m}\right)^{-1}\mathbf{Z}$$
 is distributed as $\frac{m \cdot p}{m-p+1}F_{p,m-p+1}$.

D – Estimation for multivariate distributions

- D.1) Assume that $\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_n$ are i.i.d. with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

 Unbiased estimators for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are $\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_j$ and $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\mathbf{X}_j \overline{\mathbf{X}} \right) \left(\mathbf{X}_j \overline{\mathbf{X}} \right)^r$.
- D.2) Assume that $X_1, X_2, ..., X_n$ are i.i.d. $N_p(\mu, \Sigma)$. Then we have the following results
 - $\bar{\mathbf{X}}$ and \mathbf{S} are independent
 - $\bar{\mathbf{X}} \sim N_p \left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma} \right)$
 - $(n-1)\mathbf{S} \sim W_{n,n-1}(\mathbf{\Sigma})$

E – Principal components

- E.1) Let **X** be a *p*-variate random vector with mean vector μ and covariance matrix Σ .
 - The first population principal component is the linear combination $\mathbf{a}_1'\mathbf{X}$ that maximizes $Var(\mathbf{a}_1'\mathbf{X})$ subject to $\mathbf{a}_1'\mathbf{a}_1 = 1$.
 - The second population principal component is the linear combination $\mathbf{a}_2'\mathbf{X}$ that maximizes $Var(\mathbf{a}_2'\mathbf{X})$ subject to $\mathbf{a}_2'\mathbf{a}_2 = 1$ and $Cov(\mathbf{a}_1'\mathbf{X}, \mathbf{a}_2'\mathbf{X}) = 0$.
 - Etc
- E.2) Let **X** a *p*-variate random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, and assume that $\boldsymbol{\Sigma}$ has eigenvalue-eigenvector pairs $(\lambda_1, \mathbf{e}_1), (\lambda_2, \mathbf{e}_2), \dots, (\lambda_p, \mathbf{e}_p)$ with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p > 0$. Then we have the following results:
 - The *i*-th population principal component is $Y_i = \mathbf{e}_i' \mathbf{X}$
 - $\operatorname{Var}(Y_i) = \lambda_i$
 - $\bullet \qquad \sum_{i=1}^{p} \operatorname{Var}(X_{i}) = \sum_{i=1}^{p} \sigma_{ii} = \sum_{i=1}^{p} \lambda_{i} = \sum_{i=1}^{p} \operatorname{Var}(Y_{i})$
 - $\operatorname{corr}(Y_i, X_k) = \frac{e_{ik} \sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}}$

F - Factor analysis

F.1) Let \mathbf{X} a p-variate random vector with mean vector $\mathbf{\mu}$. The orthogonal factor model assumes that $\mathbf{X} - \mathbf{\mu} = \mathbf{L} \mathbf{F} + \mathbf{\epsilon}$

where $\mathbf{L} = \{l_{ij}\}$ is a $p \times m$ matrix of factor loadings, $\mathbf{F} = [F_1, F_2, ..., F_m]'$ is a m-dimisional vector of common factors, and $\mathbf{\varepsilon} = [\varepsilon_1, \varepsilon_2, ..., \varepsilon_p]'$ is a p-vector of errors (specific factors).

- F.2) The unobservable random vectors \mathbf{F} and $\boldsymbol{\varepsilon}$ in the factor model satisfy:
 - $E(\mathbf{F}) = \mathbf{0}$
 - $Cov(\mathbf{F}) = \mathbf{I}$
 - $E(\varepsilon) = 0$
 - $Cov(\varepsilon) = \Psi = diag\{\psi_1, \psi_2, \dots, \psi_p\}$
 - $Cov(\varepsilon, F) = 0$

G – Discrimination and classification

G.1) We have two populations, denoted π_1 and π_2 , with prior probabilities p_1 and p_2 . If a random vector \mathbf{X} is selected from π_1 it has density $f_1(\mathbf{x})$, while it has density $f_2(\mathbf{x})$ if it is selected from π_2 . The cost of misclassifying an observation from π_2 as coming from π_1 is c(1|2), while the cost is c(2|1) for misclassifying an observation from π_1 as coming from π_2 . Then the expected cost of misclassification is minimized if an observation \mathbf{x} is allocated to π_1 provided that

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{c(1|2)}{c(2|1)} \cdot \frac{p_2}{p_1}$$

and allocated to π_2 otherwise.

G.2) If the densities $f_i(\mathbf{x})$, i = 1, 2, are multivariate normal with mean vectors $\boldsymbol{\mu}_i$ and common covariance matrix $\boldsymbol{\Sigma}$, then the expected cost of misclassification is minimized if an observation \mathbf{x} is allocated to π_1 provided that

$$(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})' \boldsymbol{\Sigma}^{-1} \mathbf{x}_{0} - \frac{1}{2} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2}) \ge \ln \left[\frac{c(1 \mid 2)}{c(2 \mid 1)} \cdot \frac{p_{2}}{p_{1}} \right]$$

and allocated to π_2 otherwise.