A collection of problems for STK4040/9040

This collection gives theoretical problems that it may be useful to work through when preparing for the written exam in STK4040/9040.

Problem 1

Let \mathbf{X} be a p-variate random vector with mean vector $E(\mathbf{X})=\boldsymbol{\mu}$ and covariance matrix

$$
\begin{equation*}
\boldsymbol{\Sigma}=\operatorname{Cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right\} \tag{1}
\end{equation*}
$$

a) Let a be a p-dimensional vector. Use (1) to find an expression for the variance of $Y=\mathbf{a}^{\prime} \mathbf{X}$.
b) Show that the covariance matrix $\boldsymbol{\Sigma}$ is non-negative definite.

Problem 2

Let $\boldsymbol{\Sigma}$ be a positive definite $p \times p$ matrix, and let λ be an eigenvalue of $\boldsymbol{\Sigma}$ with corresponding eigenvector \mathbf{e}.
a) Show that $\lambda>0$.
b) Show that $1 / \lambda$ is an eigenvalue of $\boldsymbol{\Sigma}^{-1}$ and determine the corresponding eigenvector.

Problem 3

Let $\boldsymbol{\Sigma}$ be a positive definite $p \times p$ matrix, and let $\lambda_{1} \geq \cdots \geq \lambda_{p}>0$ be the eigenvalues of $\boldsymbol{\Sigma}$ with corresponding orthogonal and normalized eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{p}$. Introduce the matrix \mathbf{P} with the eigenvectors as columns, $\mathbf{P}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{p}\right]$, and let $\boldsymbol{\Lambda}$ be the diagonal matrix with the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ on the diagonal.
a) Show that $\boldsymbol{\Sigma}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{\prime}$. (Hint: Use the spectral decomposition of $\boldsymbol{\Sigma}$.)
b) Show that $|\boldsymbol{\Sigma}|=\prod_{i=1}^{n} \lambda_{i}$.

Let $\boldsymbol{\Sigma}^{1 / 2}=\mathbf{P} \boldsymbol{\Lambda}^{1 / 2} \mathbf{P}^{\prime}$ be the square root matrix.
c) Show that $\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{1 / 2}=\boldsymbol{\Sigma}$.
d) Define $\boldsymbol{\Sigma}^{-1 / 2}=\mathbf{P} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{P}^{\prime}$ and show that $\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{-1 / 2}=\mathbf{I}$.

Problem 4

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ be i.i.d. p-dimensional random vectors with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.
a) Show that $\overline{\mathbf{X}}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{X}_{j}$ is an unbiased estimator of $\boldsymbol{\mu}$.
b) Show that $\mathbf{S}=\frac{1}{n-1} \sum_{j=1}^{n}\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right)^{\prime}$ is an unbiased estimator of Σ.

Assume now that the \mathbf{X}_{j} 's are $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$-distributed.
c) Give the distributions of $\overline{\mathbf{X}}$ and $(n-1) \mathbf{S}$.
d) Derive the distribution of $n(\overline{\mathbf{X}}-\boldsymbol{\mu})^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{X}}-\boldsymbol{\mu})$.
e) Describe how the result in d) may be used to obtain confidence regions for $\boldsymbol{\mu}$.

Problem 5

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ be i.i.d. and $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$-distributed random vectors.
a) Show that the likelihood takes the form

$$
L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{n p / 2}|\boldsymbol{\Sigma}|^{n / 2}} \exp \left\{-\frac{1}{2} \sum_{j=1}^{n}\left(\mathbf{X}_{j}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{X}_{j}-\boldsymbol{\mu}\right)\right\} .
$$

b) Show that

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\mathbf{X}_{j}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{X}_{j}-\boldsymbol{\mu}\right) \\
& \quad=\operatorname{tr}\left[\boldsymbol{\Sigma}^{-1}\left(\sum_{j=1}^{n}\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right)^{\prime}\right)\right]+n(\overline{\mathbf{X}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{X}}-\boldsymbol{\mu}) .
\end{aligned}
$$

c) Derive the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Are these estimators unbiased?

Problem 6

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ be i.i.d. $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$-distributed. We want to test

$$
\mathrm{H}_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0} \quad \text { versus } \quad \mathrm{H}_{1}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{0}
$$

where $\boldsymbol{\mu}_{0}$ is a known vector.
a) Explain why it is reasonable to reject H_{0} for large values of the test statistic

$$
\begin{equation*}
T^{2}=n\left(\overline{\mathbf{X}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{X}}-\boldsymbol{\mu}_{0}\right) . \tag{2}
\end{equation*}
$$

b) Explain why the statistic (2), under H_{0}, is distributed as a constant times a F-distributed random variable. What is the constant, and what are the degrees of freedom of the F-distribution?

Problem 7

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ be i.i.d. p-dimensional random vectors with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.
a) Let \mathbf{a} be a p-dimensional vector. Explain why

$$
T_{\mathbf{a}}=\frac{\sqrt{n}\left(\mathbf{a}^{\prime} \overline{\mathbf{X}}-\mathbf{a}^{\prime} \boldsymbol{\mu}\right)}{\sqrt{\mathbf{a}^{\prime} \mathbf{S a}}}
$$

follows a t-distribution with $n-1$ degrees of freedom.
The result in a) may be used to determine a confidence interval for $\mathbf{a}^{\prime} \boldsymbol{\mu}$ for a given vector a. In order to derive a confidence interval that is valid simultaneously for all choices of a, we make use of the following result

$$
\begin{equation*}
\max _{\mathbf{a}} T_{\mathbf{a}}^{2}=n(\overline{\mathbf{X}}-\boldsymbol{\mu})^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{X}}-\boldsymbol{\mu}) \tag{3}
\end{equation*}
$$

b) Prove (3) and use the result to derive a confidence interval for $\mathbf{a}^{\boldsymbol{\mu}} \boldsymbol{\mu}$ that is valid simultaneously for all choices of a.
c) Give the confidence interval in b) for the special case that $\mathbf{a}=(1,0,0, \ldots, 0)^{\prime}$.

Problem 8

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ be i.i.d. and $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$-distributed random vectors. We will consider the likelihood ratio test for testing

$$
\mathrm{H}_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0} \quad \text { versus } \quad \mathrm{H}_{1}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{0},
$$

where $\boldsymbol{\mu}_{0}$ is a known vector. We denote the likelihood by $L(\boldsymbol{\mu}, \boldsymbol{\Sigma})$; cf. Problem 5 .
a) Explain that

$$
\max _{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{n p / 2}|\widehat{\boldsymbol{\Sigma}}|^{n / 2}} e^{-n p / 2},
$$

where $\widehat{\boldsymbol{\Sigma}}$ is the maximum likelihood estimator of $\boldsymbol{\Sigma}$.
b) Derive an expression for the maximum likelihood estimator $\widehat{\boldsymbol{\Sigma}}_{0}$ of $\boldsymbol{\Sigma}$ under the null hypothesis, and show that the likelihood ratio takes the form

$$
\Lambda=\left(\frac{|\widehat{\Sigma}|}{\left|\widehat{\Sigma}_{0}\right|}\right)^{n / 2}
$$

c) Describe the relation between the likelihood ratio test and the test discussed in Problem 6.

Problem 9

Let $\mathbf{X}_{11}, \mathbf{X}_{12}, \ldots, \mathbf{X}_{1 n_{1}}$ be $N_{p}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}\right)$-distributed, and let $\mathbf{X}_{21}, \mathbf{X}_{22}, \ldots, \mathbf{X}_{2 n_{2}}$ be $N_{p}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}\right)$-distributed. Further assume that all the variables are independent.
a) Describe how one may obtain an estimator $\mathbf{S}_{\text {pooled }}$ for $\boldsymbol{\Sigma}$ by combining the sample covariance matrices from the two samples.
b) Obtain the distribution of

$$
\left(\overline{\mathbf{X}}_{1}-\overline{\mathbf{X}}_{2}-\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)\right)^{\prime}\left[\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) \mathbf{S}_{\text {pooled }}\right]^{-1}\left(\overline{\mathbf{X}}_{1}-\overline{\mathbf{X}}_{2}-\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)\right)
$$

c) Use the result of b) to obtain a test for

$$
\mathrm{H}_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2} \quad \text { versus } \quad \mathrm{H}_{1}: \boldsymbol{\mu}_{1} \neq \boldsymbol{\mu}_{2}
$$

d) Derive a confidence interval for $\mathbf{a}^{\prime}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)$ that is valid simultaneously for all choices of \mathbf{a}.

Problem 10

Let \mathbf{X} be a p-variate random vector with positive definite covariance matrix $\boldsymbol{\Sigma}$, and let $\lambda_{1} \geq \cdots \geq \lambda_{p}>0$ be the eigenvalues of $\boldsymbol{\Sigma}$ with corresponding orthogonal and normalized eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{p}$. The first population principal component is the linear combination $\mathbf{a}^{\prime} \mathbf{X}$ that maximizes $\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{X}\right)$ subject to $\mathbf{a}^{\prime} \mathbf{a}=1$
a) Show that the first population principal component is given by $Y_{1}=$ $\mathrm{e}_{1}^{\prime} \mathbf{X}$.

The i-th population principal component is given by $Y_{i}=\mathbf{e}_{i}^{\prime} \mathbf{X}, i=1, \ldots, p$.
b) Give a description of the properties of the second and third population principal components.

The total variance of \mathbf{X} is given by $\operatorname{tr}(\boldsymbol{\Sigma})$.
c) Show that $\operatorname{tr}(\boldsymbol{\Sigma})=\sum_{i=1}^{p} \lambda_{i}$ (Hint: Use the result in Problem 3a.)
d) Explain that $\sum_{i=1}^{q} \lambda_{i} / \sum_{i=1}^{p} \lambda_{i}$ is an expression for proportion of the total variance explained by the first q principal components.

Problem 11

Let \mathbf{X} be a p-variate random vector with mean vector $\boldsymbol{\mu}$. The orthogonal factor model assumes that we may write

$$
\begin{equation*}
\mathbf{X}-\boldsymbol{\mu}=\mathbf{L F}+\boldsymbol{\epsilon} \tag{4}
\end{equation*}
$$

Here the unobservable vectors \mathbf{F} and $\boldsymbol{\epsilon}$ are independent and satisfy

$$
\begin{equation*}
E(\mathbf{F})=\mathbf{0} \quad \operatorname{Cov}(\mathbf{F})=\mathbf{I}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\boldsymbol{\epsilon})=\mathbf{0} \quad \operatorname{Cov}(\boldsymbol{\epsilon})=\boldsymbol{\Psi}=\operatorname{diag}\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{p}\right\} . \tag{6}
\end{equation*}
$$

a) Show that the covariance matrix of \mathbf{X} may be given as $\boldsymbol{\Sigma}=\mathbf{L} \mathbf{L}^{\prime}+\boldsymbol{\Psi}$.
b) Give an interpretation of the factor model (4) and explain what we mean by communalities and specific variances.
c) The factor model is not uniquely determined by the equations (4)-(6). Discuss the nature of this nonuniqueness.
c) Discuss briefly two method that may be used for estimation of the factor model.

Problem 12

We have two populations, denoted π_{1} and π_{2} with prior probabilities p_{1} and p_{2}, respectively. If a random vector \mathbf{X} is selected from π_{1} it has density $f_{1}(\mathbf{x})$, while it has density $f_{2}(\mathbf{x})$ if it is selected from π_{2}. A classification rule assign an observation to population π_{1} provided that $\mathbf{X} \in R_{1}$. If $\mathbf{X} \in R_{2}$, the observation is classified to population π_{2}. We assume that R_{1} and R_{2} are disjoint and that their union is the sample space of \mathbf{X}.
a) Explain that the total probability of misclassification may be given as

$$
T P M=p_{1} \int_{R_{2}} f_{1}(\mathbf{x}) d \mathbf{x}+p_{2} \int_{R_{1}} f_{2}(\mathbf{x}) d \mathbf{x}
$$

b) Show that we may write

$$
T P M=\int_{R_{1}}\left[p_{2} f_{2}(\mathbf{x})-p_{1} f_{1}(\mathbf{x})\right] d \mathbf{x}+p_{1}
$$

c) Show that the total probability of misclassification is minimized if we choose

$$
\begin{equation*}
R_{1}=\left\{\mathbf{x}: \frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} \geq \frac{p_{2}}{p_{1}}\right\} \tag{7}
\end{equation*}
$$

d) Derive the classification rule (7) when $f_{i}(\mathbf{x})$ is the multivariate normal density with mean vector $\boldsymbol{\mu}_{i}$ and covariance matrix $\boldsymbol{\Sigma}, i=1,2$.

