Department of Mathematics
 UNIVERSITY OF OSLO

FORMULAS FOR STK4040

(version 1, September 12th, 2011)

A - Vectors and matrices

A.1) For a $n \times k$ matrix \mathbf{A} and a $k \times n$ matrix \mathbf{B} we have $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$.
A.2) For nonsingular square matrices \mathbf{A} and \mathbf{B} we have $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$ and $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
A.3) A $k \times k$ matrix \mathbf{Q} is orthogonal if $\mathbf{Q Q}^{\prime}=\mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{I}$, i.e. if $\mathbf{Q}^{-1}=\mathbf{Q}^{\prime}$.
A.4) For $k \times k$ matrices \mathbf{A} and \mathbf{B} we have $|\mathbf{A B}|=|\mathbf{A}| \cdot|\mathbf{B}|$.
A.5) For a diagonal matrix $\mathbf{A}=\operatorname{diag}\left\{a_{11}, a_{22}, \ldots, a_{k k}\right\}$ we have $|\mathbf{A}|=\prod_{i=1}^{n} a_{i i}$.
A.6) Let \mathbf{A} be a symmetric $k x k$ matrix and \mathbf{x} a k dimensional vector.

Then $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i j} x_{i} x_{j}$ is denoted a quadratic form.
A.7) A symmetric $k \times k$ matrix \mathbf{A} is nonnegative definite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} \geq 0$ for all k dimensional vectors \mathbf{x}. It is positive definite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$.
A.8) A $k x k$ matrix \mathbf{A} has eigenvalue λ with corresponding eigenvector $\mathbf{e} \neq \mathbf{0}$ if $\mathbf{A} \mathbf{e}=\lambda \mathbf{e}$.
A.9) An eigenvalue λ is a solution to the characteristic equation $|\mathbf{A}-\lambda \mathbf{I}|=0$.
A.10) For a $k x k$ matrix \mathbf{A} the trace is given by $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{k} a_{i i}$.
A.11) $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{k} \lambda_{i}$ where the λ_{i} s are the eigenvalues of \mathbf{A}.
A.12) For a $m \times k$ matrix \mathbf{B} and a $k \times m$ matrix \mathbf{C}, we have $\operatorname{tr}(\mathbf{B C})=\operatorname{tr}(\mathbf{C B})$.
A.13) For a positive definite $k \times k$ matrix \mathbf{A} we have the spectral decomposition

$$
\mathbf{A}=\lambda_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\prime}+\lambda_{2} \mathbf{e}_{2} \mathbf{e}_{2}^{\prime}+\cdots+\lambda_{k} \mathbf{e}_{k} \mathbf{e}_{k}^{\prime}
$$

Here $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0$ are the eigenvalues of \mathbf{A} and $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}$ are the corresponding orthogonal and normalized eigenvectors (i.e. $\mathbf{e}_{i}^{\prime} \mathbf{e}_{i}=1$ and $\mathbf{e}_{i}^{\prime} \mathbf{e}_{j}=0$ for $i \neq j$)
A.14) For a positive definite $k \times k$ matrix \mathbf{A}, the square root matrix of \mathbf{A} and its inverse are defined as $\mathbf{A}^{1 / 2}=\sum_{i=1}^{k} \sqrt{\lambda_{i}} \mathbf{e}_{i} \mathbf{e}_{i}^{\prime}$ and $\mathbf{A}^{-1 / 2}=\sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_{i}}} \mathbf{e}_{i} \mathbf{e}_{i}^{\prime}$.
A.15) Let \mathbf{B} be a positive definite matrix and \mathbf{d} be a given vector. Then for an arbitrary nonzero vector \mathbf{x}, we have $\max _{\mathbf{x} \neq 0} \frac{\left(\mathbf{x}^{\prime} \mathbf{d}\right)^{2}}{\mathbf{x}^{\prime} \mathbf{B} \mathbf{x}}=\mathbf{d}^{\prime} \mathbf{B}^{-1} \mathbf{d}$ with the maximum attained when $\mathbf{x}=c \mathbf{B}^{-1} \mathbf{d}$ for any constant $c \neq 0$.
A.16) Let \mathbf{B} be a positive definite $p \times p$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}>0$ and corresponding orthogonal and normalized eigenvectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{p}$. Then

$$
\max _{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\prime} \mathbf{B} \mathbf{x}}{\mathbf{x}^{\prime} \mathbf{x}}=\lambda_{1} \quad\left(\text { attained when } \mathbf{x}=\mathbf{e}_{1}\right)
$$

Moreover for $j=1,2, \ldots, p-1$

$$
\left.\max _{\mathbf{x} \perp \mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{j}} \frac{\mathbf{x}^{\prime} \mathbf{B x}}{\mathbf{x}^{\prime} \mathbf{x}}=\lambda_{j+1} \quad \text { (attained when } \mathbf{x}=\mathbf{e}_{j+1}\right)
$$

A.17) Given a positive definite $p \times p$ matrix \mathbf{B} and a scalar $b>0$, we have

$$
\frac{1}{|\boldsymbol{\Sigma}|^{b}} \exp \left(-\frac{1}{2} \operatorname{tr}\left[\mathbf{\Sigma}^{-1} \mathbf{B}\right]\right) \leq \frac{1}{|\mathbf{B}|^{b}}(2 b)^{p b} e^{-b p}
$$

for any positive definite $p \times p$ matrix $\boldsymbol{\Sigma}$, with equality if and only if $\boldsymbol{\Sigma}=(1 / 2 b) \mathbf{B}$.

B-Random vectors and matrices

B.1) For random matrices \mathbf{X} and \mathbf{Y} of the same dimension, and \mathbf{A} and \mathbf{B} matrices of constants, we have that

$$
\begin{aligned}
& E(\mathbf{X}+\mathbf{Y})=E(\mathbf{X})+E(\mathbf{Y}) \\
& E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}
\end{aligned}
$$

B.2) For a random vector \mathbf{X} with mean vector μ, the covariance matrix is given by

$$
\operatorname{Cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right\}
$$

B.3) For a random vector \mathbf{X} with mean vector μ and covariance matrix Σ and a matrix \mathbf{C} of constants, we have that $E(\mathbf{C X})=\mathbf{C} E(\mathbf{X})=\mathbf{C} \boldsymbol{\mu}$ and $\operatorname{Cov}(\mathbf{C X})=\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}$.
B.4) Let $\boldsymbol{\rho}$ denote the correlation matrix. Then

$$
\mathbf{V}^{1 / 2} \boldsymbol{\rho} \mathbf{V}^{1 / 2}=\boldsymbol{\Sigma} \quad \text { and } \quad \boldsymbol{\rho}=\mathbf{V}^{-1 / 2} \boldsymbol{\Sigma} \mathbf{V}^{-1 / 2}
$$

where $\mathbf{V}^{1 / 2}=\operatorname{diag}\left(\sqrt{\sigma_{11}}, \sqrt{\sigma_{22}}, \ldots, \sqrt{\sigma_{k k}}\right)$ is the standard deviation matrix.

C - The multivariate normal distribution and related distributions

C.1) A p-variate random vector \mathbf{X} with mean vector μ and covariance matrix Σ is multivariate normally distributed, $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its density takes the form

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

C.2) $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if and only if $\mathbf{a}^{\prime} \mathbf{X} \sim N\left(\mathbf{a}^{\prime} \boldsymbol{\mu}, \mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}\right)$ for all p-dimensional vectors \mathbf{a}.
C.3) Let $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then the probability is $1-\alpha$ that \mathbf{X} takes values in the ellipsoid $\left\{\mathbf{x}:(\mathbf{x}-\boldsymbol{\mu})^{\prime} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \leq \chi_{p}^{2}(\alpha)\right\}$
C.4) Let $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let \mathbf{A} be a $q \times p$ matrix and \mathbf{d} a q-dimensional vector.

Then $\mathbf{A X}+\mathbf{d} \sim N_{q}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{d}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$
C.5) Assume that $\left[\begin{array}{l}\mathbf{X}_{1} \\ \mathbf{X}_{2}\end{array}\right] \sim N_{p}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2}\end{array}\right],\left[\begin{array}{ll}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right]\right)$, where \mathbf{X}_{1} is a q dimensional vector.

Then $\mathbf{X}_{1} \mid \mathbf{X}_{2}=\mathbf{x}_{2} \sim N_{q}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}\right)$
C.6) Assume that $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ are independent, $\mathbf{X}_{j} \sim N_{p}\left(\boldsymbol{\mu}_{j}, \mathbf{\Sigma}\right)$, and let $\mathbf{V}_{1}=c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}+\cdots+c_{n} \mathbf{X}_{n}$ and $\mathbf{V}_{2}=b_{1} \mathbf{X}_{1}+b_{2} \mathbf{X}_{2}+\cdots+b_{n} \mathbf{X}_{n}$, where the c_{j}^{\prime} 's and b_{j} 's are constants. Then

$$
\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right] \sim N_{p}\left(\left[\begin{array}{c}
\sum_{j=1}^{n} c_{j} \boldsymbol{\mu}_{j} \\
\sum_{j=1}^{n} b_{j} \boldsymbol{\mu}_{j}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{c}^{\prime} \mathbf{c} \boldsymbol{\Sigma} & \mathbf{b}^{\prime} \mathbf{c} \boldsymbol{\Sigma} \\
\mathbf{b}^{\prime} \mathbf{c} \boldsymbol{\Sigma} & \mathbf{b}^{\prime} \mathbf{b} \boldsymbol{\Sigma}
\end{array}\right]\right)
$$

C.7) Assume that $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{m}$ are i.i.d. $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. The distribution of $\sum_{j=1}^{m} \mathbf{Z}_{j} \mathbf{Z}_{j}^{\prime}$ is called the Wishart distribution with m degrees of freedom (and $p \times p$ covariance matrix $\boldsymbol{\Sigma}$), denoted $W_{p, m}(\boldsymbol{\Sigma})$.
C.8) Properties of the Wishart distribution:

- If $\mathbf{W}_{1} \sim W_{p, m_{1}}(\boldsymbol{\Sigma})$ and $\mathbf{W}_{2} \sim W_{p, m_{2}}(\boldsymbol{\Sigma})$ are independent, then $\mathbf{W}_{1}+\mathbf{W}_{2} \sim W_{p, m_{1}+m_{2}}(\boldsymbol{\Sigma})$
- If $\mathbf{W} \sim W_{p, m}(\boldsymbol{\Sigma})$ and \mathbf{C} is a $q \times p$ matrix, then $\mathbf{C W C} \mathbf{C}^{\prime} \sim W_{q, m}\left(\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\prime}\right)$
C.9) Let $\mathbf{Z} \sim N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ and $\mathbf{W} \sim W_{p, m}(\boldsymbol{\Sigma})$ be independent.

Then $\mathbf{Z}^{\prime}\left(\frac{\mathbf{W}}{m}\right)^{-1} \mathbf{Z}$ is distributed as $\frac{m \cdot p}{m-p+1} F_{p, m-p+1}$.

D - Estimation for multivariate distributions

D.1) Assume that $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ are i.i.d. with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

Unbiased estimators for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are $\overline{\mathbf{X}}=\frac{1}{n} \sum_{j=1}^{n} \mathbf{X}_{j}$ and $\quad \mathbf{S}=\frac{1}{n-1} \sum_{j=1}^{n}\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{j}-\overline{\mathbf{X}}\right)^{\prime}$.
D.2) Assume that $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$ are i.i.d. $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then we have the following results

- $\overline{\mathbf{X}}$ and \mathbf{S} are independent
- $\overline{\mathbf{X}} \sim N_{p}\left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma}\right)$
- $(n-1) \mathbf{S} \sim W_{p, n-1}(\boldsymbol{\Sigma})$

E-Principal components

E.1) Let \mathbf{X} be a p-variate random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

- The first population principal component is the linear combination $\mathbf{a}_{1}^{\prime} \mathbf{X}$ that maximizes $\operatorname{Var}\left(\mathbf{a}_{1}^{\prime} \mathbf{X}\right)$ subject to $\mathbf{a}_{1}^{\prime} \mathbf{a}_{1}=1$.
- The second population principal component is the linear combination $\mathbf{a}_{2}^{\prime} \mathbf{X}$ that maximizes $\operatorname{Var}\left(\mathbf{a}_{2}^{\prime} \mathbf{X}\right)$ subject to $\mathbf{a}_{2}^{\prime} \mathbf{a}_{2}=1$ and $\operatorname{Cov}\left(\mathbf{a}_{1}^{\prime} \mathbf{X}, \mathbf{a}_{2}^{\prime} \mathbf{X}\right)=0$.
- Etc
E.2) Let \mathbf{X} a p-variate random vector with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, and assume that $\boldsymbol{\Sigma}$ has eigenvalue-eigenvector pairs $\left(\lambda_{1}, \mathbf{e}_{1}\right),\left(\lambda_{2}, \mathbf{e}_{2}\right), \ldots,\left(\lambda_{p}, \mathbf{e}_{p}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p}>0$. Then we have the following results:
- The i-th population principal component is $Y_{i}=\mathbf{e}_{i}^{\prime} \mathbf{X}$
- $\operatorname{Var}\left(Y_{i}\right)=\lambda_{i}$
- $\sum_{i=1}^{p} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{p} \sigma_{i i}=\sum_{i=1}^{p} \lambda_{i}=\sum_{i=1}^{p} \operatorname{Var}\left(Y_{i}\right)$
- $\operatorname{corr}\left(Y_{i}, X_{k}\right)=\frac{e_{i k} \sqrt{\lambda_{i}}}{\sqrt{\sigma_{k k}}}$

F - Factor analysis

F.1) Let \mathbf{X} a p-variate random vector with mean vector $\boldsymbol{\mu}$. The orthogonal factor model assumes that $\mathbf{X}-\boldsymbol{\mu}=\mathbf{L F}+\boldsymbol{\varepsilon}$
where $\mathbf{L}=\left\{l_{i j}\right\}$ is a $p \times m$ matrix of factor loadings, $\mathbf{F}=\left[F_{1}, F_{2}, \ldots, F_{m}\right]^{\prime}$ is a m-dimisional vector of common factors, and $\boldsymbol{\varepsilon}=\left[\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p}\right]^{\prime}$ is a p-vector of errors (specific factors).
F.2) The unobservable random vectors \mathbf{F} and $\boldsymbol{\varepsilon}$ in the factor model satisfy:

- $E(\mathbf{F})=\mathbf{0}$
- $\operatorname{Cov}(\mathbf{F})=\mathbf{I}$
- $E(\boldsymbol{\varepsilon})=\mathbf{0}$
- $\operatorname{Cov}(\boldsymbol{\varepsilon})=\boldsymbol{\Psi}=\operatorname{diag}\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{p}\right\}$
- $\operatorname{Cov}(\boldsymbol{\varepsilon}, \mathbf{F})=\mathbf{0}$

G - Discrimination and classification

G.1) We have two populations, denoted π_{1} and π_{2}, with prior probabilities p_{1} and p_{2}. If a random vector \mathbf{X} is selected from π_{1} it has density $f_{1}(\mathbf{x})$, while it has density $f_{2}(\mathbf{x})$ if it is selected from π_{2}. The cost of misclassifying an observation from π_{2} as coming from π_{1} is $c(1 \mid 2)$, while the cost is $c(2 \mid 1)$ for misclassifying an observation from π_{1} as coming from π_{2}. Then the expected cost of misclassification is minimized if an observation \mathbf{x} is allocated to π_{1} provided that

$$
\frac{f_{1}(\mathbf{x})}{f_{2}(\mathbf{x})} \geq \frac{c(1 \mid 2)}{c(2 \mid 1)} \cdot \frac{p_{2}}{p_{1}}
$$

and allocated to π_{2} otherwise.
G.2) If the densities $f_{i}(\mathbf{x}), i=1,2$, are multivariate normal with mean vectors $\boldsymbol{\mu}_{i}$ and common covariance matrix $\boldsymbol{\Sigma}$, then the expected cost of misclassification is minimized if an observation \mathbf{x} is allocated to π_{1} provided that

$$
\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{0}-\frac{1}{2}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2}\right) \geq \ln \left[\frac{c(1 \mid 2)}{c(2 \mid 1)} \cdot \frac{p_{2}}{p_{1}}\right]
$$

and allocated to π_{2} otherwise.

