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A - Vectors and matrices 
 

A.1) For a n x k matrix A and a k x n matrix B we have ( )  AB B A . 

 

A.2) For nonsingular square matrices A and B we have 1 1( ) ( )  A A  and  1 1 1( )  AB B A . 

 

A.3) A  k x k matrix  Q  is orthogonal if  1,  i.e. if     QQ Q Q I Q Q . 

 

A.4) For  k x k matrices A and B we have | | | | | | AB A B . 

 

A.5) For a diagonal matrix 11 22diag{ , , , }kka a aA  we have 
1

| |
n

ii

i

a


A . 

 

A.6) Let A be a symmetric k x k matrix and x a k dimensional vector.  

       Then 
1 1

is denoted a  . 
k k

ij i j

i j

a x x quadratic form
 

 x A x  

 

A.7) A symmetric k x k matrix A is nonnegative definite if 0  for all  dimensional vectors k x Ax x .  

        It is positive definite if 0  for all    x Ax x 0 . 
 

A.8) A  k x k matrix  A  has eigenvalue  with corresponding eigenvector  e 0  if Ae e . 

 

A.9) An eigenvalue  is a solution to the characteristic equation 0 A I . 

 

A.10) For a k x k matrix A the trace is given by 
1

tr( )
k

ii

i

a


A . 

A.11)
1

tr( ) where the s are the eigenvalues of 
k

i i

i

 


A A . 

 

A.12) For a m x k matrix B and a k x m matrix C, we have tr( ) tr( )BC CB . 
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A.13) For a positive definite  k x k matrix  A  we have the spectral decomposition 

  1 1 1 2 2 2 k k k       A e e e e e e  

          Here 1 2 0k      are the eigenvalues of  A and 1 2, , , ke e e  are the corresponding  

          orthogonal and normalized eigenvectors  (i.e. 1 and 0 for )i i i j i j   e e e e  

 

A.14) For a positive definite  k x k matrix  A, the square root matrix of A and its inverse are defined as  

          1/ 2

1

k

i i i

i




A e e  and 1/ 2

1

1k

i i

i i





A e e . 

 

A.15) Let B be a positive definite matrix and d be a given vector. Then for an arbitrary nonzero  

         vector x, we have 
2

1( )
max 






x 0

x d
d B d

x Bx
 with the maximum attained when 1c x B d   

         for any constant 0.c   

 

A.16) Let B be a positive definite pxp matrix with eigenvalues 1 2 0p       and corresponding 

          orthogonal and  normalized eigenvectors  1 2, , , pe e e .  Then  

  1 1max (attained when )



 

x 0

x Bx
x e

x x
 

         Moreover for 1,2, , 1j p    

  
1 2

1 1
, , ,

max (attained when )
j

j j  



 

x e e e

x Bx
x e

x x
 

 

A.17) Given a positive definite pxp matrix B and a scalar b > 0, we have  

   11 1 1
exp tr (2 )

2

pb bp

b b
b e  

    
 

Σ B
Σ B

   

         for any positive definite p x p matrix Σ , with equality if and only if (1/ 2 )bΣ B . 

 

 

 

B - Random vectors and matrices 
 

B.1) For random matrices  X and Y of the same dimension, and A and B matrices of constants,  

       we have that 

  ) )( ) ( (E E E X Y X Y  

  )( ) (E EA B A BX X  

 

B.2) For a random vector X with mean vector  , the covariance matrix is given by 

  Cov( ) {( )( ) }E   X X μ X μ  

 

B.3) For a random vector X with mean vector  and covariance matrix  and a matrix C of constants,  

       we have that ( ) ( )E E CX C X Cμ  and Cov( ) CX CΣC . 
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B.4) Let   denote the correlation matrix. Then 

  1/ 2 1/ 2 1/ 2 1/ 2and   V V Σ V ΣVρ ρ , 

       where  1/ 2

11 22=diag , , , kk  V  is the standard deviation matrix. 

 

 

C - The multivariate normal distribution and related distributions 
 

C.1) A p-variate random vector X with mean vector   and covariance matrix   is  

        multivariate normally distributed, ~ ( , )pNX μ Σ , if its density takes the form 

  1

1/ 2/ 2

1

2

1
( ) exp ( ) ( )

(2 ) p
f



 
    

 
x x μ Σ x μ

Σ
 

 

C.2) ~ ( , )pNX μ Σ  if and only if ~ ( , )N  a X a μ a Σa  for all p-dimensional vectors a. 

 

C.3) Let ~ ( , )pNX μ Σ , then the probability is 1   that X takes values in the ellipsoid       

        1 2: ( ) ( ) ( )p   x x μ Σ x μ  

 

C.4) Let ~ ( , )pNX μ Σ , and let  A  be a qxp matrix and d a q-dimensional vector.  

       Then ~ ( , )qN  AX d Aμ d AΣA  

 

C.5)  Assume that 
1 1 11 12

2 2 21 22

~ ,pN
      
      

      

X μ Σ Σ

X μ Σ Σ
, where 1X  is a q dimensional vector. 

        Then 
1 1

1 2 2 1 12 22 2 2 11 12 22 21| ~ ( ( ), )qN     X X x μ Σ Σ x μ Σ Σ Σ Σ  

 

C.6) Assume that 1 2, , , nX X X  are independent, ~ ( , )j p jNX μ Σ , and let 1 1 1 2 2 n nc c c   V X X X   

        and 2 1 1 2 2 n nb b b   V X X X , where the cj's and bj's are constants. Then     

  
11

2
1

~ ,

n

j jj

p n

j jj

c
N

b





  
      

           
  





μV c cΣ b cΣ

V b cΣ b bΣμ
 

 

C.7)  Assume that 1, , mZ Z  are i.i.d. ( , )pN 0 Σ . The distribution of  
1

m

j j

j

Z Z  is called the  

         Wishart distribution with m degrees of freedom (and pxp covariance matrix Σ ), denoted , ( )p mW Σ . 

 

C.8) Properties of the Wishart distribution: 

 If  
11 ,~ ( )p mWW Σ  and 

22 ,~ ( )p mWW Σ  are independent, then 
1 21 2 ,~ ( )p m mW W W Σ  

 If  ,~ ( )p mWW Σ  and C  is a qxp matrix, then ,~ ( )q mW CWC CΣC  
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C.9) Let ~ ( , )pNZ 0 Σ  and ,~ ( )p mWW Σ  be independent.  

       Then 

1

m



 
 
 

W
Z Z  is distributed as , 1

1
p m p

m p
F

m p
 



 
. 

 

 

D – Estimation for multivariate distributions 
 

D.1) Assume that 1 2, , , nX X X  are i.i.d. with mean vector μ  and covariance matrix Σ .  

       Unbiased estimators for μ  and Σ  are  
1

1 n

j

jn 

 X X  and     
1

1

1

n

j j

jn 


  


S X X X X . 

 

D.2) Assume that 
1 2, , , nX X X  are i.i.d. ( , )pN μ Σ . Then we have the following results 

 X  and  S are independent 

 
1

~ ,pN
n

 
 
 

X μ Σ  

 , 1( 1) ~ ( )p nn W  S Σ  

 

 

E – Principal components 
 

E.1) Let X  be a p-variate random vector with mean vector μ  and covariance matrix Σ .  

 The first population principal component is the linear combination 1
a X  that maximizes 

       1Var( )a X  subject to 1 1 1 a a . 

 The second population principal component is the linear combination 2
a X  that maximizes 

      2Var( )a X  subject to 2 2 1 a a  and  1 2Cov( , ) 0  a X a X . 

 Etc 

 

 

E.2) Let X  a p-variate random vector with mean vector μ  and covariance matrix Σ , and assume  

        that Σ  has eigenvalue-eigenvector pairs 1 1 2 2( , ), ( , ), , ( , )p p  e e e  with 1 2 0p      . 

        Then we have the following results: 

 The i-th population principal component is i iY  e X  

 Var( )i iY   

 
1 1 1 1

Var( ) Var( )
p p p p

i ii i i

i i i i

X Y 
   

       

 corr( , )
ik i

i k

kk

e
Y X




  
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F – Factor analysis 
 

F.1) Let X  a p-variate random vector with mean vector μ . The orthogonal factor model assumes that  

          X μ LF ε   

       where { }ijlL  is a  p x m  matrix of factor loadings,  1 2, , , mF F F F  is a m-dimisional vector of 

       common factors, and 
1 2, , , p      ε  is a p-vector of errors (specific factors).  

 

F.2) The unobservable random vectors F  and ε  in the factor model satisfy: 
 

 ( )E F 0  

 Cov( ) F I  

 ( )E ε 0  

 1 2Cov( ) diag{ , , , }p   ε Ψ  

 Cov( , ) ε F 0  

 

 
 

G – Discrimination and classification 
 

G.1) We have two populations, denoted 1 and 2 , with prior probabilities p1 and p2 .  If a random vector  

        X is selected from 1 it has density 1( )f x , while it has density 2 ( )f x  if it is selected from 2 .  

        The cost of misclassifying an observation from 2 as coming from  1 is (1| 2)c , while the cost  

        is (2 |1)c  for misclassifying an observation from 1 as coming from  2. Then the expected cost of      

        misclassification is minimized if an observation x is allocated to 1  provided that 

        1 2

2 1

( ) (1| 2)

( ) (2 |1)

f pc

f c p
 

x

x
   

       and allocated to 2 otherwise. 

 

G.2) If the densities ( ), 1,2,if i x  are multivariate normal with mean vectors iμ  and common  

        covariance matrix Σ , then the  expected cost of  misclassification is minimized if an  

       observation x is allocated to 1  provided that 

        
1 1 2

1 2 0 1 2 1 2

1

1

2

(1| 2)
( ) ( ) ( ) ln

(2 |1)

pc

c p

   
       

 
μ μ Σ x μ μ Σ μ μ    

      and allocated to 2 otherwise. 

 
 
 
 

 


