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Problem 1.

(a) Generate X = G−1(U) where U ∼ uniform[0, 1]. Then

Pr(X ≤ x) = Pr(G−1(U) ≤ x) = Pr(U ≤ G(x)) = G(x)

showing that X has the right cummulative distribution function. Solv-
ing G(x) = u gives G−1(u) = − log(u−1 − 1).

(b)

h(x) = −0.5 log(2π) − 0.5x2 + x + 2 log(1 + e−1)

giving

h′(x) = −x + 1 − 2
e−x

1 + e−x
= −x + 1 − 2

1

1 + ex

which is equal to 0 for x=0. Further,

h′′(x) = −1 + 2
ex

1 + ex

which is always negative.

(c) Define M = maxx f(x)/g(x) = f(0)/g(0) = 4/
√

2π. Then generate
x ∼ g(·) and accept with probability f(x)/[Mg(x)].

The acceptance rate is M−1 = 0.6267.

(Continued on page 2.)
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Problem 2.

(a) Main idea: Generate sequence x
1,x2, ... such that x

s converges (in
distribution) to f(·).
Requirement: f is the invariant distribution, irreducible and aperiodic
chain.

Strengths: General algorithm, can be used on very complex problems.

Weaknesses: Approximate method, only right distribution in the limit.
Need to find a burnin such that we get approximately right distribution.
We also get dependent variables which increase the variance of our
Monte Carlo estimates.

(b) Systematic scan:

• Generate ys
1
∼ N(xs−1

1
, d2

1
)

• Put xs
1

= ys
1

with probability min{1, f(ys
1
, xs−1

2
)/f(xs−1

1
, xs−1

2
)},

otherwise xs
1

= xs−1

1
. (Note that no acceptance if ys

1
< 0. One can

use alternative proposals taking the constraint on x1 into account.)

• Generate ys
2
∼ N(xs−1

2
, d2

2
)

• Put xs
2

= ys
2

with probability min{1, f(xs
1
, ys

2
)/f(xs

1
, xs−1

2
)}, other-

wise xs
2

= xs−1

2
.

Random scan: Select which of x1 and x2 to change.

Simultaneous updating:

• Generate ys
j ∼ N(xs−1

j , d2

j), j = 1, 2

• Put (xs
1
, xs

2
) = (ys

1
, ys

2
) with probability min{1, f(ys

1
, ys

2
)/f(xs−1

1
, xs−1

2
)}.

(Note again that no acceptance if ys
1

< 0. Can use alternative pro-
posals taking the constraint on x1 into account.)

(c) We have

f(x1|x2) ∝f(x1, x2)

∝ exp
[

−x10.5(1 + x2

2
)+

]

∝0.5(1 + x2

2
) exp

[

−x10.5(1 + x2

2
)
]

showing that x1|x2 is exponential distributed with parameter 0.5(1 +
x2

2
). Further

f(x2|x1) ∝f(x1, x2)

∝ exp
[

−0.5x1(1 + x2

2
)
]

∝
√

x1√
2π

exp
[

−0.5x1x
2

2

]

showing that x2|x1 is Gaussian with expectation zero and variance 1/x1.
The Gibbs sampler then goes as follows:

(Continued on page 3.)
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• Generate xs
1
∼ exp(0.5(1 + (xs

2
)2)).

• Generate xs
2
∼ N(0, 1/x1).

(d) Gibbs sampler requires more work in the sense that the conditional
distributions need to be worked out. On the order hand, there is no
need to choose proposal distributions or tuning parameters.

Problem 3.

(a) The density p(xt|y1:t) is difficult to evaluate, while

p(x1:t|y1:t) ∝ p(x1:t)p(y1:t|x1:t)

which is easy to evaluate.

(b) The weights being equal to one follows directly from the definition of

w1(x1) =
p(x1|y1)

q1(x1|y1)

=
p(x1|y1)

p(x1|y1)
= 1

Then all samples have equal weight and we get a high effective sample
size.

(c) A weakness with using the data-dependent proposal is that we need to
simulate from a more complex distribution p(xt|xt−1, yt) and also need
to work out the density p(yt|xt−1).

END


