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Abstract

If a natural non-transitive group is attached to a statistical model, minimum
risk equivariant estimators could be used on orbits, and for the orbit index,
maximum likelihood estimation from the sample orbit index. This is used to
motivate REML.
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1 Basic approach.

Maximum likelihood is the default estimation method in most statistical applications,

even though it is well known that it can be motivated properly only for large data

sets. A somewhat more specific statement is to say that maximum likelihood requires

the number n of data points to be large compared to the number p of parameters

in the model. If this condition does not hold, we have basically only two general

alternative methods of estimation (Lehmann & Casella, 1998). The first alternative
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is to try to find the best unbiased estimator, most commonly through conditioning

and the Rao-Blackwell theorem. The second alternative is to impose some symmetry

on the situation and try to find the best equivariant estimator. We will use the second

approach here.

Assume that a group G on the sample space has been chosen. In general the

choice of group is crucial; different groups typically lead to different estimators, but

this is really not more strange than the fact that different loss functions, or for

that sake different variants of the same model, lead to different estimators. What is

important, is to try to choose a group which is felt to express a natural symmetry

of the situation.

From G, a group Ḡ on the parameter space is induced by

Pθḡ(y ∈ A) = Pθ(yg ∈ A),

the basic requirement being that the model is closed under this group and that the

loss function is invariant.

Call a parametric function ψ permissible if ψ(θg) always is a function of ψ(θ); then

a new group G∗ is induced on the image of ψ. An estimator ψ̂ is called equivariant

if (ψ̂g∗)(x) = ψ̂(xg) always. (For convenience we use the systematic convention that

the group symbol is placed to the right of the element to be transformed.)

The simplest situation is when the group Ḡ is transitive on the parameter space.

(This means that for any fixed θ0, we have that θ0ḡ runs through the whole parameter

space when ḡ runs through Ḡ.) Then the risk function (expected loss) will be a

constant for all θ when the estimator is fixed, so the risk is a uniquely determined

function of the estimator. This strongly suggests that there always exists a unique
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best equivariant estimator, which in fact holds quite generally. When Ḡ is not

transitive, a similar uniqueness property holds on the orbits of the group, where an

orbit is defined as the collection of parameter values θ0ḡ, where ḡ runs through Ḡ

and θ0 is fixed. The following facts are well known:

1. The orbit index τ for a non-transitive group in the parameter space is the

same as the maximal invariant under Ḡ.

2. A similar statement holds in the sample space. The orbit index a here has a

distribution which only depends upon τ .

3. The risk function is constant on orbits in the parameter space.

The last statement again strongly suggests that estimation of the parameter on

the orbit leads to a unique best equivariant solution, which indeed is the case quite

generally; more explicitly, the estimator can be expressed as an integral of the Pitman

type.

But after this, the orbit index (maximal invariant) must be estimated in other

ways, and a natural solution is to use maximum likelihood using the orbit index in

the sample space. The main purpose of this note is to point out that the restricted

maximum likelihood (REML) estimator of dispersion parameters in linear mixed

models is just a straightforward example of this.

The REML estimator was first proposed (for balanced data) by W.A. Thompson

(1962), and then it was independently proposed and applied for unbalanced data by

Patterson & R. Thompson (1971). After having competed with some other variance

component estimators for several years, it is now the standard procedure, with a

considerable attached literature.

I don’t believe that the result given below is very original in a strict meaning

3



of this term. For instance, it is hinted at on p. 191 in Lehmann & Casella (1998).

Nevertheless, I feel that it is useful to give an explicit discussion in a grouptheoretical

setting, both since this perspective seems to be enlightening, and since it gives the

possiblity to extend the estimation principle to many other situations. None of the

94 references in the encyclopedia article on REML by Speed (1997) seem to have

been written from this perspective. The only explicitely related paper which I know

of, is McCullagh (1996), who uses a more abstract approach. A completely different

motivation for REML is given in Smyth & Verbyla (1996), where further references

to the question of motivation are given.

2 The model.

Let the vector of observations y be modelled as

Nn(Xβ,Σ), (1)

where X is a known n× p matrix of rank p, and where Σ depends upon r unknown

parameters γ. We will assume that γ varies over some open set, and that other-

wise conditions (Lehmann & Casella, 1998) for the existence and uniqueness of the

solutions of the likelihood equations corresponding to the nonsingular distributions

given below, are satisfied.

An important special case of this model is given by the mixed model

y = Xβ +
r∑

k=1

Zkuk,

where the matrices Zk have dimensions n× qk and rank qk, and where the uk’s are

independent with uk ∼ Nqk
(0, σ2

kI).
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The parameters of the model are θ = (β, γ), and in the mixed model case γ =

(σ2
1, . . . , σ

2
r ) are called the variance components.

This model again contains as special cases all common linear models, in particular

those of analysis of variance, balanced or unbalanced. When r > 1, a non-trivial set

of variance components is to be estimated.

3 The group.

The expectation part of the model (1) simply means that E(y) is assumed to belong

to the p-dimensional known vector space V = span(X). A natural symmetry group

attached to the model is therefore the group G of translations in this space. As a

first observation, if y → yg = y + c for some fixed c ∈ V , and if the model holds for

y, then it also holds for yg. Hence the model is invariant under this group.

The induced group Ḡ in the parameter space is given by (β, γ) → (β + b, γ),

where c = Xb. Note that c runs through V if and only if b runs through all of Rp.

Obviously, Ḡ is not transitive, and the orbits are just indexed by γ.

4 Estimation within orbits.

For a fixed orbit, we have that Σ = Σ(γ) is fixed, and the maximum likelihood

estimate is

β̂ = (X ′Σ−1X)−1X ′Σ−1y.
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Extending the discussion of Lehmann & Casella (1998), Section 3.4, we can also

show that this estimator gives the minimum risk equivariant estimator of linear

combinations φ = a′β for convex and even loss functions. Of course, this is also the

weighted least squares estimator, which is well known to have good properties and

is much used in many areas of applied statistics. The only difficulty in the present

setting is that it depends upon unknown parameters, the indices of orbits.

5 Estimation of orbit indices.

This is the crucial point, and the argument relies on an easily proved property of

groups: The maximal invariant in sample space has a distribution which depends

only upon the orbit index (maximal invariant) in the parameter space. Hence this

gives a natural setting for estimation.

Theorem 1.

(a) In the model (1) under the group G, the maximal invariant can be expressed

as

r = (I −X(X ′X)−1X ′)y.

(b) Let A be an n × (n − p) matrix of full rank n − p such that A′X = 0. Then

an equivalent orbit index is given by z = A′r = A′y. This variable z will have a

non-singular distribution.

(c) The maximum likelihood estimator of γ found from the distribution of z is

independent of the choice of the matrix A with the stated properties.
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Remark.

The maximum likelihood estimator referred to in Theorem 1 will be the REML

estimator for models of the form (1), in particular for mixed linear models. It is

obvious from the setting that it will give an estimator of just the orbit index γ, and

it is also obvious that this estimator will have many of the ordinary properties of

maximum likelihood estimators. It should also be quite clear that as a principle of

estimation this can be generalized to many other situations where a natural group

can be associated to the statistical model.

Proof.

(a) It is clear that if y → y + c, where c ∈ V = span(X), then r → r, so r is

invariant. Since y can be recovered from r and the projection of y upon V , and since

no part of this projection can be invariant under translations in V , we must have

that r is maximal invariant.

(b) From the model equation of the form y = Xβ + e, where e ∼ Nn(0,Σ), we

see that r = Pe, where P = I − X(X ′X)−1X ′ is the projection upon the (n − p)-

dimensional space orthogonal to V . From this we see directly that z = A′e has a

distribution which is independent of β, specifically, Nn−p(0, A′ΣA), which is non-

singular, since the covariance matrix must have rank n− p.

(c) For any n× (n− p) matrix B of rank n− p such that B′X = 0 we must have

that the coloumns of B must span the space orthogonal to V ; hence B = AC for a

non-singular matrix C. This implies that B′y = C ′A′y, and the likelihoods of A′y

and B′y can be simply transformed into each other.
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6 Calculation.

In a general estimation procedure, it may be impractical to find an unspecified matrix

A whose columns span the space orthogonal to V = span(X), so practical compu-

tation algorithms use other techniques. One of the early papers on computation in

REML is Corbeil & Searle (1976), while a modern survey and many references can

be found in Speed (1997). The methods are much used by animal breeders, and

this community has also done an important job in constructing efficient progams for

REML estimation in large data sets.

7 A simple example.

Here is the simplest possible example: Let y1, . . . , yn be independently N(µ, σ2). The

REML estimator of σ2 is, according to the receipt given above, found as follows:

Take 1 = (1, . . . , 1)′. and let A be any n × (n − 1) matrix of full rank satisfying

A′1 = 0. Then a simple calculation gives that the maximum likelihood estimator

from z = A′(y − ȳ1) = A′y is given by

σ̂2 =
1

n− 1
z′(A′A)−1z =

1
n− 1

y′A(A′A)−1A′y.

Here it also can be seen directly that the estimator is independent of the choice of

A, since the resulting projection equals

A(A′A)−1A′ = I − 11′/n.

Inserting this gives the ordinary variance estimator wich is unbiased, or, more im-

portant, has a denominator with the correct degrees of freedom.

8



Consider now a possibly unbalanced one-way analysis of variance situation, i.e.,

k independent groups, where group j contains nj independent observations, each

N(µj , σ
2). The REML estimator for σ2 can here be derived from a simple extension

of the result of the previous paragraph, and will be

σ̂2 =
1∑
nj − k

∑
j

∑
i

(yji − ȳj·)2.

The corresponding maximum likelihood estimator is biased, and is found by deleting

the ′ − k′ in the denominator here. The bias can be considerable if k is large and

the numbers of observations in the groups are small. For instance, if n1 = . . . =

nk = 2, then the denominator in the REML estimator is k, as it should be, while

the maximum likelihood estimator is too small, with a denominator 2k. A similar

example from block experiments can be traced back to Neyman & Scott (1948).

8 Concluding remarks.

The REML principle has turned out to be very useful, for instance in animal breeding,

but also in other cases where linear mixed models are used. According to Speed

(1997), in the 1970s REML was simply one of a number of methods of estimating

dispersion parameters, but now it is becoming the preferred method. By what we

hope to have illustrated here using very simple arguments, REML estimation can

be regarded as an instance of a general symmetry based estimation principle which

seems to have the potential for even further applications.
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