
Problems: STK4070-sp11

Problem 1

a): Consider the data set sigarett and verify that if co and tar are
used as covariates, the coefficient of tar can be obtaine either
by
• including both regressors, or
• regressing nikot and tar on co, and then regress the residuals
fron nikot on co on the residuals from tar on co.

b): Verify by formal calculations that the result must be true.
c): Let

Y = Xβ + Zγ + ε

Generalize and verify the result from part b) to this setting.

Problem 2

Verify that for the model
Y = Xβ + ε,

F = (n−(p+1))R2

p(1−R2) . What null hypotesis is tested using this statistic?

Problem 3
Consider the data set sigarett, and fit the model

nikot = β0 + β1co + β2tar

a): Suppose only co is included as a regressor. Find the expectation
of the estimator of the slope. Fit such a simple linear regression,
and discuss and interpret the results.

b): Discuss whether it may be appropriate to include regressors as
co2, tar2 and co× tar.

Problem 4

The data set sleep2 contains information of the sleep lengths of 58
mammals. The column "TS" indicates the total sleep length in hours of
the mammal, "BodyWt" is the body weight in kg and "D" is an index of danger,
0 is no danger and 1 is danger.

a): Fit a simple linear regression model of the form

lm(TS~log(BodyWt),x=T,data=sleep2)

and verify that the estimates of β0, β1 and σ2 agree with what you
get from the standard formulas.

b): Compute 95% confidence intervals for β0 and β1.
c): Discuss the model fit in this case and make a plot the observations

and the fitted regression line.
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d): Now we consider also including the danger index. Fit models of
the type
• One common regression line
• Common intercept
• Paralell lines
• General situation

e): Compare the models using the function anova in R. Which model
is most appropriate in this situation?

f): Apply the function vcov to the model you ended up with in part
e) and discuss the result.

Problem 5

Consider the linear model

Y = Xβ + ε

where X is a n×(p+1) matrix of full rank. We assume that the elements
ε1, . . . , εn are independent and that εi ∼ N(0, σ2), i = 1, . . . , n.

Partition X as X = (X1, X2) where X1 consists of the first k columns
of X.

Let β̂ be the OLS-estimator for a model having design matrix X and α̂

be the OLS-estimator for a model having design matrix X1. Let β̂H be
the p+1-dimensional vector given by β̂′H = (α̂′, 0, . . . , 0)′. Let RSS0 and
RSS1 be the residual sum of squares for the two models.

a) Show that

β̂′(X ′X)β̂ − β̂′H(X ′X)β̂H = RSS1 −RSS0.

b) Write of the details for simple linear regression where we let
k = 1 and X1 = (1, . . . , 1)′.

Problem 6

The dataset jj contains quarterly earnings per share of the American
company Johnson & Johnson for the period from first quarter 1960 to last
quarter 1980. Let yt, t = 1, . . . , 84 be the log-transformed data.

a) Fit the regression model

yt = βt + α1D1(t) + α2D2(t) + α3D3(t) + α4D4(t) + εt

where Di(t) = 1 if time t corresponds to quarter i = 1, 2, 3, 4, and
zero otherwise. The Di(t)’s are called dummy or indicator variables.
We will assume for now that εt are i.i.d N(0, σ2). What is the interpretation
of the parameters β, α1, α2, α3 and α4?

b) Explain why an intercept term cannot be included the model in (a)?
c) Fit two models where an intercept is included and where D1(t) is

deleted in the first one and D2(t) is deleted in the second. What
happens to the intercept?

Consider so-called centered seasonal dummies, CSi(t) = 3/4 if time t corresponds
to quarter i = 1, 2, 3, 4, and equal to −1/4 otherwise.
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d) Repeat part a)-c) but with the CSi(t) instaed of the Di(t)
e) What is now a reasonable interpretation of the intercept?

Problem 7

Consider a situation with 12 observations where the covariates are two
factors or categorical variables with two and three levels respectively.
Let the observations be so-called lexicographically ordered, i.e.
y = (y111, y112, y121, . . . , y232).

a) Find the design matrix X, i.e. express the model in the form Y =
Xβ + ε, using the corner point paraneterization. Then

E[Yijk] = µ0 + δi + γj + (δγ)ij , i = 1, 2 j = 1, 2, 3 k = 1, 2

satisfying the constraints δ1 = γ1 = 0 and (δγ)ij = 0 if i = 1 or
j = 1.

b) Do the same as in part a) using sum contrasts. Then

E[Yijk] = α + α
(1)
i + α

(2)
j + α

(12)
ij

satisfying
∑

α
(1)
i =

∑
α

(2)
j =

∑
i α

(12)
ij =

∑
j α

(12)
ij = 0

c) Express µ0, δ2, γ2, γ3, (δγ)22, (δγ)23 in terms of the α’s and vice versa.
[Hint: Here you should use R. To invert a matrix A, write solve(A).
To multiply two matrices A and B, write A%*%B.]

Problem 8
We consider the linear model

Y = Xβ + ε

where the n×(p+1) matrix is the design matrix. Let x′i denote the i’th
row of X. Let Y(i) be the n−1 vector where the i’th element of Y is
deleted. Let X(i) be the (n − 1) × (p + 1) matrix where the i’th row of
X is deleted.

a) Explain why X ′X = X ′
(i)X(i) + xix

′
i.

b) Use part a) to show that

(X ′
(i)X(i))−1 = (X ′X)−1 +

(X ′X)−1xix
′
i(X

′X)−1

1− hii

where hii is the leverage of observation i.
c) Show that the OLS-estimator β̂(i) based on n−1 observations, where

the i’th is deleted, can be expressed as

β̂(i) = β̂ − (X ′X)−1xiêi

1− hii

where ei is the residual of the i’th observation.
d) Show that

(β̂(i) − β̂)′(X ′X)(β̂(i) − β̂) =
hii

(1− hii)2
ê2
i
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and discuss the relation to Cook’s distance. Also consider the
standarized residual vs leverage plot implemented for models fitted
by lm() in R.

Problem 9

Consider the setup in problem 7. A nested structure has the form

µij = E(Yijk) = µ + αi + βij , i = 1, 2, j = 1, 2, 3, k = 1, 2

a) Discuss situations where this is a sensible parameterization.
b) Formulate restrictions so that such models are well specified.
c) What are the corresponding design matrices?

Problem 10

Do Problem 12.5.20 in John. Rice (2007): Mathematical Statistics and
Data Analysis, thrd. ed, Duxbury Press. The data can be found on the
course home page as ‘‘dye’’.

In addition:

c) Find a 90% confidence interval for σ2
ε and σ2

A/σ2
ε .

Problem 11
Do Problem 2.1 on page 44-45 in Fitzmaurice, Laird and Ware. The data
set can be found on the course home page as lead.

Problem 12

Consider the situations where the observations Yi, i = . . . , N are independent
n-dimensional vectors where

Yi = Xiβ + εi

with εi ∼ MN(0, Σ).
Let Wi, i = 1, . . . , N be n× n symmetric, positive definite matrices.

a) Show that the estimator of β minimizing
∑N

i=1(Yi−Xiβ)′Wi(Yi−Xiβ)
has the form

β̂W = (
N∑

i=1

X ′
iWiXi)−1

N∑

i=1

X ′
iWiYi

b) Show that E[β̂W ] = β and that the covariance of β̂W , E[(β̂W−β)(β̂W−
β)′] = (

∑N
i=1 X ′

iWiXi)−1
∑N

i=1 X ′
iWiΣWiXi(

∑N
i=1 X ′

iWiXi)−1.

c) What is the distribution of β̂W ?

Problem 13

Consider the situations where the observations Yi, i = . . . , N are independent
n-dimensional vectors where

Yi = Xiβ + εi

with εi ∼ MN(0, Σ).
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This can be considered as a system of n regression equations, where
the expected response in equation j, j = 1, . . . , n is µij = β0+xij1β1+· · ·+
βpxijp. Here we include a constant term so the design matrices have p+
1 columns.

Let êij , i = 1, . . . , N be the residuals from the j’th regression, let

σ̂j1j2 =
1

N − (p + 1)

N∑

i=|
êij1 êij2

and let the estimator for the covarince matrix Σ be Σ̂ = {σ̂j1j2}.
a) Find E[Σ̂].
b) Let β̂W be the weighted least squares estimator using Σ̂−1 as weighting

matrix. When is the distribution of β̂W approximately multivariate
normal for N large? What are the expectation and covariance of
the approximate distribution?

c) Compare the estimated covariance matrix in FLW, page 116, with
the Σ̂ as defined above. The data set can be found on the textbook
home page.

Problem 14

Let X be a n× p matrix of rank p.

a) If A = I − X(X ′X)−1X ′, use the spectral theorem to show that
there is a Nm × (n − p) matrix B such that B′B = I and BB′ =
A.[Hint: Show that A is idempotent, i.e. A2 = A. Then the
eigenvalues of A must be equal to 1 or 0.]

b) Show that B′X = 0
c) Show that for a n×n non-singular matrix Σ−1−Σ−1X(X ′Σ−1X)−1X ′Σ−1 =

B(B′ΣB)−1B′.

Problem 15

Consider the situation where the observations Yi, i = . . . , N are independent
n-dimensional vectors

Yi = Xiβ + εi

with εi ∼ MN(0, Σi). The covariance matrices Σi, i = 1; . . . , N can be different
and will generally be of the form Σi = Σi(θ) where θ denotes one or more
unknown parameters.

We shall consider how the restricted maximum likelihood (REML) estimators
for θ can be derived. Remember that the main idea behind the REML is
to base the estimators of θ on a set of linear combinations of the original
observations.

For notational convenience we introduce the stacked Nn×1 vector Y =
(Y ′

1 , . . . , Y ′
N )′, the Nn×p matrixX = (X ′

1, . . . , X
′
N )′ and the Nn×Nn matrix

Σ where the diagonal blocks equal Σ1, . . . , ΣN, and the others are equal
to 0. Thus Y ∼ MN(Xβ, Σ).

Remember that for fixed θ the generalized least squares estimator has
the form β̂(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1Y = GY where G is a p×Nn matrix.
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a) Define Z = B′Y , where the matrix B satisfies B′B = I and BB′ =
I −X(X ′X)−1X ′. Show that E(Z) = 0. What is E(ZZ ′)?

b) Why is the distribution of Z multinormal?
c) Show that Z and β̂(θ) are independent.

We now want to use the distribution of Z for the estimation of θ.

d) Let L = (G′, B) and show that det(B′ΣB) = det(L′L)det(Σ)det(X ′Σ−1X)
e) Use part c) of Problem 14 to show that Z ′(BΣB′)−1Z = Y ′Σ−1Y−

β̂(θ)′X ′Σ−1Xβ̂(θ).
f) Conclude that the logarithm of the part of a likelihood based on

Z may be written as

−1
2

log(Σ)− 1
2

log(X ′Σ−1X)− 1
2
(Y −Xβ̂(θ))′Σ−1(Y −Xβ̂(θ))

Problem 16

Consider the "Treatment of Lead-Exposed children" case discussed in
section 5.4 in the textbook by Fitzmaurice, Laird and Ware. The model
is

Yi = Xiβ + ei, i = 1, . . . , 100,

where Yi and ei are 4-dimensional vectors. The error terms ei, i = 1, . . . , 100
are independent multivariate normal, ei ∼ MN(0, Σ) where Σ is an unstructured
covariance matrix. In Table 5.5 estimates of the regression coefficients
can be found.

a) Explain how the design matrices Xi must be to produce the estimates
in Table 5.5.

b) What are the estimates of µij = E(Yij), j = 1, . . . , 4, i = 1, . . . , 100.
c) Now, consider design matrices of the form

X1
i =




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0




if the child belongs to the placebo group, and

X1
i =




1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1




otherwise. Find the estimates of γ in the model

Yi = X1
i γ + ei, i = 1, . . . , 100.

d) What are the interpretations of the coefficients in γ?
e) As explained in the textbook, the covariance matrix of the estimators

β̂ can be estimated as Ĉ = (
∑100

i=1 X ′
iΣ̂
−1Xi)−1. How can the covariance

matrix of the estimators of γ be estimated using Ĉ?
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Problem 17

Do problem 5.1 in FLW using the R-procedure gls. The data sets can
be found on the textbook home page or the course webpage as ‘‘cholesterol’’.
For R it is best to indicate missing observations with NA.

Problem 18

Consider a situation where N individuals or units are observed at the
same n occasions. A possible model for the measurements yij , j = 1, . . . , n, i =
1, . . . , N is

Yi = β11n + β2t + bi1n + εi, i = 1, . . . , N

where bi, i = 1, . . . , N and the elements of εi, i = 1, . . . , N are assumed to
be independent, normally distributed random variables with expectation
0 and an variance τ2 and σ2 respectively. The n-dimensional vector where
all elements are equal to 1 is denoted by 1n and t is the vector where
the elements are t1, . . . , tn.

a) Let Σ be the covariance matrix of Yi. Verify that Σ−1 is the matrix

where all the diagonal elements equal σ2+(n−1)τ2

σ2(σ2+nτ2) and all the off-diagonal

elements equal −τ2

σ2(σ2+nτ2).

b) Find the empirical BLUP , b̂i, for the random effect bi.
c) Explain why the within-individual variation can be measured by

σ2 and the between-individual variation can be measured by τ2. Write
the empirical BLUP b̂i on a form where it is easy to see the effect
of σ2 and τ2.

d) What happens when σ̂2 is large compared to τ̂2?
e) What happens when τ̂2 is large compared to σ̂2?

Problem 19

The data set Sitka in the R-library MASS contains observations on 79
Sitka spruce trees which are divided into two groups. The first group
consists of 54 trees which were grown in an ozone enriched environment,
and the other group consists of 25 trees which were controls and grown
under natural conditions. Ozone pollution is common in urban areas, and
the impact of increased ozone concentrations on tree growth is of considerable
interest.

The size of the trees were measured at five occasions roughly at monthly
intervals. The time is given in days since 1 January 1988 and is indicated
as tij , j = 1, . . . , 5, i = 1, . . . , 79.

In this problem we will analyze the size, over the observation period,
of the 79 trees, and compare the two groups.

a) Compute the mean values of the sizes of the trees in each group
and plot the means in the two groups as a function of time. Describe
the main features of the plot.

Consider a model of the form

Yi = Xiβ + ei, i = 1, . . . , 79
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where the error terms ei, i = 1, . . . , 79 are assumed to be independent, multivariate
normally distributed with expectation 0 and an unstructured covariance
matrix Σ. The observations of the control group at the first occasion
are used as reference group.

b) What must the design matrices Xi look like for estimating the response
profiles? Explain how Σ can be estimated. Find estimators for
β and Σ and compute the estimated expected response profiles.

c) Estimate two models: in the first model E[Yij ] = β1 + β2 × tij +
β3×grpi+β4×grpi×tij, where grpi is equal to 0 if the tree belong
to the control group and equal to 1 if it is grown in an ozone
enriched environment, in the second model quadratic terms are added,
i.e, E[Yij ] = β1+β2×tij+β3×grpi+β4×grpi×tij+β5×t2ij+β6×grpi×t2ij.
What are the estimated standard errors of β5 and β6?

d) Plot the estimated expected values for the model containing the
quadratic terms, i.e. estimates of the expected response profiles.

e) Test whether the quadratic terms are significant. What is the
p-value?

In the rest of the problem we consider a linear mixed model of the form

Yi = Xiβ + Zibi + εi, i = 1, . . . , 79

where bi, i = 1, . . . , 79 and εi, i = 1, . . . , 79 are assumed to be independent,
multivariate normally distributed random vectors with expectation 0 and
an unstructured covariance matrix G and σ2I5 respectively.

f) Fit a model where E[Yij |bi] = β1 +β2× tij +β3×grpi +β4×grpi× tij +
β5 × t2ij + β6 × grpi × t2ij + b1i + b2i × tij.

g) Test whether the quadratic terms are significant using a Wald and
a likelihood ratio test. What are the p-values?

h) Compute the estimated covariance matrix of the observations in
this model and compare the estimate to what you found in part b).

i) Plot the residuals against the fitted values. Comment on the result.

[ R-hint: To get hold of the data:

library(MASS)
attach(Sitka)

In part f) you need the R-function lme. To get hold of it use:

library(nlme)

Problem 20

Situations where models involving multiple components of variation naturally
arise are in the so-called split-plot designs. Originating in agricultural
field trials, they have proved useful also in many other context. In
the textbook by Fitzmaurice et al. the relevance for biological and medical
studies is discussed in several places, as you can see from the index
at the end of the book. In this problem we will consider an industrial
application.

The typical feature of experiment of this kind is that there are I blocks
available consisting of J whole plots each. To each whole plot within
a block a different whole plot treatment is applied. Then, each whole
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plot is divided into K subplots with a different subplot treatment to
each subplot.

The table below 1 shows the outcome of an industrial experiment to investigate
the corrosion resistance in steel bars with four different coatings, C1, C2, C3, C4

produced at furnace temperatures 360, 370 and 380 centigrades. There
are two important sources of variation: the temperature at which the
measurements were taken and the position of the steel bars within the
furnace, i.e how close the bars were placed to the center of the furnace
where the temperature is highest. Here the whole plots were the six furnace
heats at which the measurements were taken, and the subplots the four
pour positions in the furnace at which the steel bars with coatings C1, C2, C3, C4

could be placed. These were randomly allocated. Thus, there are two
associated variances: σ2

W for the whole plots describing the variation
from one heat to another and the subplot variance σ2

S measuring variation
from position to position of the steel bars within the same furnace heat.

Table 1. Corrosion resistance of steel bars treated with four dif-
ferent coatings and produced at three different temperatures.

C1 C2 C3 C4

360 67 73 83 89
33 8 46 54

370 65 91 87 86
140 142 121 150

380 155 127 147 212
108 100 90 153

With IJ = 2× 3 whole plots and K = 4 subplots a possible model for
these measurements yijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K is

Yijk = µ + βj + κij + γk + (γβ)jk + εijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

with constraints
∑J

j=1 βj = 0,
∑K

k=1 γk = 0 and
∑J

j=1(γβ)jk =
∑K

k=1(γβ)jk =
0.

The random variables κij , i = 1, . . . , I, j = 1, . . . J are assumed to be independent
and identically distributed N(0, σ2

W ) and independent of εijk, i = 1, . . . , I, j =
1, . . . J, k = 1, . . . , K which are independent and identically distributed N(0, σ2

S).

a) Indicate what the numerical values of the estimates for µ, βj , γk, (γβ)jk, j =
1, . . . , J, k = 1, . . . , K and the variances σ2

W and σ2
S are. Comment on

the size of the estimated variances. Here you can use the R-procedure
lme() to find the estimates.

We will now consider how the estimators for the variances σ2
W and σ2

S can
be explicitly found by considering the appropriate sum of squares. We

indicate sums over an index with a ” · ”, e.g Yij· =
∑K

k=1 Yijk, and the

corresponding averages as Ȳij· = 1
K

∑K
k=1 Yijk.

1The data can be found on furnace.txt on the course web page
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b) Find the expected value of

SSERR1 = K

IJ∑

i=1,j=1

(Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)2

c) Explain how another unbiased estimate of the expected value from
part b), E[SSERR1], can be found from a one-way layout analysis
of variance using the sums

ȳij·, i = 1, . . . , I, j = 1, . . . , J

d) Compute the numerical estimate from the previous part, and compare
it with the estimate that can be deduced from the fitted model
in part a).

e) Find the expected value of

SSERR2 =
IJK∑

i=1,j=1,k=1

(Yijk − Ȳij· − Ȳ·jk + Ȳ·j·)2

f) Use the result from part b) and e) to find unbiased estimators
for the variances σ2

W and σ2
S based on SSERR1 and SSERR2.

g) Consider the sum of squares SSERR1 and SSERR2. Discuss the
properties that are needed, in addition to what you have already
found, for constructing 95% confidence intervals for σ2

S and σ2
W /σS

based on the χ2 and Fisher distributions. What would such intervals
look like? [ NB. In part f) and g) you are not asked to do any
numerical computations.]

Problem 21

To study the effect of a drug on epileptic seizures the following experiment
is conducted. The study group is divided into two groups of size m1 and
m2. One group is chosen at random and the members receive the drug. The
members of the other group are given a placebo. For each participant
the number of epileptic seizures in a number of months is recorded, as
yij , i = 1, . . . , m1 + m2, j = 1, . . . , ni.

Consider the model where the observations are considered as realizations
of random variables, Yij where

Yij |ui are independent Poisson, i = 1, i = . . . , m1 + m2, j = 1, . . . , ni,

E[Yij |ui] = exp(β0 + ui), i = 1, . . . , m1, j = 1, . . . , ni

E[Yij |ui] = exp(β0 + β1 + ui), i = m1 + 1, . . . , m1 + m2, j = 1, . . . , ni,

ui ∼ i.i.d.N(0, σ2)

a) Find an expression for the logarithm of the likelihood.
b) Discuss how the likelihood can be maximized and what problems one

faces.
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Problem 22

Assume that Y1, . . . , Yn are independent N(µ, σ2) distributed.
Show that the maximum likelihood estimator for σ2 based on the (transformed)

variables V1 = Y1− Ȳ , . . . , Vn−1 = Yn−1− Ȳ is
∑n

i=1(Yi− Ȳ )2/(n−1) [ Hint:
Express the covariance matrix of V1, . . . , Vn−1 as σ2(In−1− 1

n1n−11n−1) and
use that the determinant of this matrix can be found from the formula
det(A + bb′) = det(A)(1 + b′A−1b).]


