STK4130 / STK9130 Fall 2012 – Exam project

Deadline Monday December 3rd, before midnight (24:00)

You are not allowed to collaborate with other students on the project exam.

The exam project consists of 4 Problems over 3 pages. Make sure you have the complete exam set.

The answer to the exam project can be handed in on email to osamuels@math.uio.no or on paper to my mailbox on the 7th floor in NHA. You may deliver a handwritten or Latex/Word-processed answer to the project in English, Norwegian or any other Scandinavian language

Problem 1

In this problem we assume that X_i , $i=1,\ldots,n$ are iid and exponentially distributed, i.e. with density $f(x;\lambda)=\lambda \exp(-\lambda x)$ for x>0. Then $\mu=\mathrm{E}[X_i]=1/\lambda$ and $\mathrm{Var}[X_i]=1/\lambda^2=\mu^2$.

- a) Let $\hat{\lambda} = 1/\bar{X}$. Argue that $\hat{\lambda} \to_p \lambda$.
- b) Find the limiting distribution of $\sqrt{n}(\bar{X}-\mu)$ and from this derive the limiting distribution of $\sqrt{n}(\hat{\lambda}-\lambda)$ (without using that $\hat{\lambda}$ is the MLE of λ).
- c) Show that $\hat{\lambda}$ is MLE and use this to find the limit distribution of $\sqrt{n}(\hat{\lambda}-\lambda)$.
- d) Find the influence function of the functional $\lambda = \lambda(F) = 1/\mathrm{E}[X_i]$ and based on this suggest the limiting distribution of $\sqrt{n}(\hat{\lambda} \lambda)$. Compare the results in questions b), c) and d).
- e) Suppose that we erroneously assumed that $X_i \sim \exp(\lambda)$ and that in fact the X_i has density $g(x; \theta, k) = \frac{\theta k}{(\theta x + 1)^{k+1}}$ for x > 0 and k > 2. Characterize the parameter λ estimated by $\hat{\lambda} = 1/\bar{X}$ in terms of k and θ . Also derive the limiting distribution of $\sqrt{n}(\hat{\lambda} \lambda)$ under the misspecified model.
- f) Twist the problem around. Suppose we erroneously assumed that the X_i were iid from $g(x; \theta, k)$ for a fixed k and unknown θ , but that the X_i in fact were exponentially distributed. Again characterize the θ being estimated by the misspecified MLE $\hat{\theta}$ and give an expression for large sample distribution of $\sqrt{n}(\hat{\theta} \theta)$. Use numerical integration to investigate the effect of the misspecification.

Problem 2

As in Problem 1 assume that X_i , $i=1,\ldots,n$ are iid and exponentially distributed, i.e. with density $f(x;\lambda)=\lambda\exp(-\lambda x)$. Now the X_i 's are not observed directly. Rather one observes for given z_i the indicator $Y_i=I(X_i\leq z_i)$. This can be described as having only left-censored or right-censored observation where X_i is left-censored at z_i if $Y_i=1$ and right-censored at z_i if $Y_i=0$. The data are summarized as $(z_1,Y_1),\ldots,(z_n,Y_n)$. Such data are sometimes referred to as "current status data".

a) Show that the likelihood for the data $(z_1, Y_1), \ldots, (z_n, Y_n)$ can be written

$$L(\lambda) = \prod_{i=1}^{n} [(1 - \exp(-\lambda z_i))^{Y_i} \exp(-\lambda z_i)^{(1-Y_i)}]$$

and derive the Newton-Raphson and the Fisher-scoring algorithms for calculating the MLE λ^* based on the left- and right-censored data.

- b) Since the current status data are incomplete compared to observing all the X_i one can also obtain λ^* based on the EM-algorithm. Derive this algorithm and in particular find the conditional expectations $\mathrm{E}[X_i|X_i\leq z_i]$ and $\mathrm{E}[X_i|X_i>z_i]$.
- c) If all $z_i = z$ are equal then the MLE $\lambda^* = -\frac{1}{z} \ln(1 \frac{Y_{\bullet}}{n})$ where $Y_{\bullet} = \sum_{i=1}^{n} Y_i$. Show that this holds. Furthermore show that the EM-algorithm has a fixed point at λ^* , i.e. if the estimate in iteration k equals $\lambda^{(k)} = \lambda^*$ then also the estimate in the next iteration $\lambda^{(k+1)} = \lambda^*$.
- d) Generate a small data set for instance with $n = 10, \lambda = 1$ and $z_i = \frac{i}{4}, i = 1, \ldots, 10$ and demonstrate that the MLE λ^* is a fixed point for the EMalgorithm also in this situation.

Problem 3

Assume again that $X_i|\lambda$ for $i=1,\ldots,n$ are iid and $\exp(\lambda)$. Furthermore assume that λ has a prior from the gamma (α,β) distribution.

a) Find the posterior distribution of $\lambda | X_1, \dots, X_n$. Furthermore derive expressions for the posterior mean and posterior mode. Compare with the posterior median for a few choices of $\sum_{i=1}^{n} X_i$, α and β .

- b) Assume a quadratic loss function $L(\hat{\lambda}, \lambda) = (\hat{\lambda} \lambda)^2$. Write down the risk function and the Bayes risk of both the posterior mean and the posterior mode expressed through integrals. Discuss problems with finding explicit expressions.
 - As a "bonus" question: Find explicit expressions for the risk function and the Bayes risk (assuming $\alpha > 2$) for the posterior mean and mode under the loss function $L_2(\hat{\lambda}, \lambda) = (1/\hat{\lambda} 1/\lambda)^2$.
- c) Argue that the posterior mean is admissible under quadratic loss $L(\hat{\lambda}, \lambda) = (\hat{\lambda} \lambda)^2$. Is the posterior mode admissible?

Problem 4

Assume that X_i , i = 1, ..., n are iid $U[0, \theta]$ where θ is an unknown parameter.

- a) Show that both $\widehat{\theta} = 2\overline{X}$ and $\theta^* = M \frac{n+1}{n}$ are unbiased estimators of θ where $M = \max(X_1, \dots, X_n)$. Find the variances of $\widehat{\theta}$ and θ^* .
- b) Show that M is sufficient for θ . Argue that $\tilde{\theta} = \mathbb{E}[\hat{\theta}|M]$ is unbiased with $\operatorname{Var}(\tilde{\theta}) \leq \operatorname{Var}(\hat{\theta})$.
- c) Derive an explicit expression for $\tilde{\theta}$. Discuss whether it is UMVU.