Exercises for STK4130.

Exercise 5 In a genetic model individuals belong to one out of four classes with probabilites $p_{1}=\frac{1}{2}+\frac{\theta}{4}, p_{2}=\frac{1}{2}(1-\theta)=p_{3}, p_{4}=\frac{\theta}{4}$. Here θ is an unknown parameter. Assume we observe n independent individuals where X_{j} individuals belong to class j.
a) Argue that $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ has a multinomial distribution with n trials and probabilites ($p_{1}, p_{2}, p_{3}, p_{4}$). Find a likelihood equation for estimation of θ and show that it can be written as a quadratic equation.
b) An alternative method for finding the MLE is using the EM-algorithm by augmenting the data to ($Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$) that are multinomial distributed with n trials and probabilites $\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=\left(\frac{1}{2}, \frac{\theta}{4}, \frac{1}{2}(1-\right.$ $\theta), \frac{1}{2}(1-\theta), \frac{\theta}{4}$). This correspond to ($X_{1}, X_{2}, X_{3}, X_{4}$) being incomplete data from $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}\right)$ with $X_{1}=Y_{1}+Y_{2}$ and $X_{j}=Y_{j+1}$ for $j=2,3,4$.
Show there is an explicit maximum likelihood estimator for θ based on ($Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$).
c) Find the conditional expectation $\mathrm{E}\left[Y_{1} \mid Y_{1}+Y_{2}=x_{1}\right]$ and derive an EM-algorithm for estimation of θ.
d) In a data set of $n=197$ animals one observed $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=$ (125, 18, 20, 34). Implement the EM-algorithm and find the MLE of θ iteratively. Also solve the quadratic equation in question a).

Exercise 6 Assume that a random variable X is discrete on a set $\left\{x_{1}, \ldots, x_{k}\right\}$ with unknown probabilities $p_{j}=\mathrm{P}\left(X=x_{j}\right)$.
a) Assume we observe n independent replicates of X and records Y_{j} as the number of these that are equal to x_{j}. Explain why $\hat{p}_{j}=\frac{Y_{j}}{n}$ is the MLE for p_{j}.
b) Assume that we have n independent replicates of X, but that these are interval censored to intervals $\left(u_{i}, v_{i}\right.$], i.e. $u_{i}<X_{i} \leq v_{i}$, where u_{i} and v_{i} are known numbers. Find the conditional probabilities $\mathrm{P}(X=$ $j \mid u<X \leq v)$.
c) Derive the EM-algorithm for finding the MLE of the p_{j} 's with interval censored data.
d) For right censored data we will either know the value of X_{i} exactly or have a right censored data point where it is only known that $X_{i} \in$ $\left(u_{i}, \infty\right)$. for some known value u_{i}. Specialize the EM-algorithm of question d) to this situation (still under the discrete model of question a).
e) Assume now a general (continuous) distribution $F(x)$ for the X_{i}. For right censored data it can be shown that the NPMLE (non-parametric likelihood estimator) has positive mass only in the exact observed values of the X_{i} 's and at infinity if the largest recorded value is right censored. Furthermore, the Kaplan-Meier estimator is NPMLE. It can be expressed as

$$
\hat{F}(x)=1-\prod_{x_{j}<x}\left[1-\frac{Y_{j}}{n_{j}}\right]
$$

where x_{j} are the points with exact observed $X_{i}=x_{j}, Y_{j}$ the number of exact observed $X_{i}=x_{j}$ and n_{j} the number of individuals we know have $X_{i} \geq x_{j}$, i.e. those with exact observed $X_{i} \geq x_{j}$ and those with lower limit of the right censoring interval u_{i} that is greater than x_{j}.
In the following (mini) dataset (from Aalen, Borgan \& Gjessing, Suvival and Event History Analysis, Springer, 2008) the right-censored values are indicated by astrix $\left({ }^{*}\right)$ and the exact observed values without.

$$
2.70,3.50^{*}, 3.80,4.19,4.42,5.43,6.32^{*}, 6.46^{*}, 7.32,8.11^{*}
$$

Calculate the Kaplan-Meier estimator using the formula and also using the EM-algorithm modified from question d).

Exercise 7 Assume that X_{i} are i.i.d. from a one-parameter exponential family with density $f(x ; \theta)=\exp (\theta x-d(\theta)+S(x))$. Assume that the incomplete data are interval censored in intervals $\left(u_{i}, v_{i}\right.$] (that is $u_{i}<X_{i} \leq$ v_{i}). Show that the EM-algorithm is based on estimating the complete data X_{i} conditional expectation $\mathrm{E}\left[X_{i} \mid u_{i}<X_{i} \leq v_{i}\right]$.

