Exercises for STK4130.

Exercise 1

a) Show the Tsjebysjeff inequality: If $\mu = E[Y]$ and then

$$P(|Y - \mu| > \varepsilon) \le \frac{Var[Y]}{\varepsilon^2}$$

b) Show the Markov inequality:

$$P(|Y| > \varepsilon) \le \frac{E[|Y|^p]}{\varepsilon^p}$$

Exercise 2 The weak law of large numbers state that the average $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ converges in probability to $\mu = \mathbb{E}[Y_i]$ (when $n \to \infty$) if the Y_i are iid with existing expectation, i.e. $\mathbb{E}[|Y_i|] < \infty$. The simple proof of this result using the Tsjebysjeff inequality also requires that $\operatorname{Var}[|Y_i|] < \infty$.

For the Student t-distribution ν degrees of freedom the expectation exist (and equals 0) for $\nu > 1$ and the variance exists (and equals $\frac{\nu}{\nu-2}$) for $\nu > 2$.

- a) Simulate n = 100000 iid Y_i from the t-distribution with $\nu = 3$ (using for instance R. Calculate and plot $\bar{Y}_m = \frac{1}{m} \sum_{i=1}^m Y_i$ for m = 1, 2, ..., n. In this case the variance exists and the law of large numbers is covered by the proof using Tsjebysjeff.
- b) Repeat the simulation for $\nu = 2, 1.5$ and 1.1 (in which case the weak law of large numbers hold, but requires a more complicated proof).
- c) Do also a simulation for $\nu = 1$. Then the weak law of large number no longer hold. Compare with the simulations in questions a) and b).