Introduction to methods and techniques in financial mathematics (STK 4510) Solutions to the exam, 02.12.2011

Problem 1 Denote by $X(i):=\log \left(S\left(t_{i+1}\right) / S\left(t_{i}\right)\right)$ the $i-$ th log-return. Then we use the MLE estimators $\widehat{\mu}=\frac{1}{N} \sum_{i=1}^{N} X(i)$ and $\widehat{\sigma}=\frac{1}{N} \sum_{i=1}^{N}(X(i)-$ $\widehat{\mu})^{2}$ for $N=5$ to obtain

$$
\widehat{\mu}=-0.00669278, \widehat{\sigma}=0.0058787
$$

Problem 2 We have to study the solutions $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$ to the linear system of equations (see e.g. Th. 5.20 of the course manuscript):

$$
\begin{aligned}
& \alpha_{1}-r+\sigma_{11} \lambda_{1}+\sigma_{12} \lambda_{2}=0 \\
& \alpha_{2}-r+\sigma_{21} \lambda_{1}+\sigma_{22} \lambda_{2}=0 .
\end{aligned}
$$

Denote by $\sigma=\left(\sigma_{i j}\right)_{1 \leq i, j \leq 2}$. Then $\operatorname{det}(\sigma)=0.20 \cdot 0.175-0.14 \cdot 0.25=0$. So $\operatorname{rank}(\sigma)<m=2$. The latter implies (by Th. 5.20) that the BS-market is not complete.

Substitution of λ_{1} in the first equation gives

$$
\begin{equation*}
\alpha_{1}-r+\frac{\sigma_{11}}{\sigma_{21}}\left(r-\alpha_{2}\right)-\frac{\operatorname{det}(\sigma)}{\sigma_{21}} \lambda_{2}=\alpha_{1}-r+\frac{\sigma_{11}}{\sigma_{21}}\left(r-\alpha_{2}\right)=0 . \tag{1}
\end{equation*}
$$

So the market has no arbitrage if and only if equation (1) holds.
Problem 3 (i) Let $\mathcal{F}_{t}, 0 \leq t \leq T$ be a filtration. A process $X(t)$ is a \mathcal{F}_{t}-martingale iff (i) $E\left[\left|X_{t}\right|\right]<\infty$ for all t (ii) X_{t} is \mathcal{F}_{t}-adapted and (iii) $E\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$ for $t \geq s$.
(ii) Conditions (i) and (ii) are clearly fulfilled by B_{t}. Since $B_{t}-B_{s}$ is independent of B_{s} for $t>s$ we find

$$
\begin{aligned}
E\left[B_{t} \mid \mathcal{F}_{s}\right] & =E\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=E\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+E\left[B_{s} \mid \mathcal{F}_{s}\right] \\
& =E\left[B_{t}-B_{s}\right]+B_{s}=B_{s} .
\end{aligned}
$$

As for $B_{t}+4 t$ we observe that

$$
E\left[B_{t}+4 t \mid \mathcal{F}_{s}\right]=B_{s}+4 t \neq B_{s}+4 s \text { for } t>s
$$

So the second process is not a martingale.
(iii) Observe that $\frac{(x+h)^{3}}{3}-\frac{x^{3}}{3}=x^{2} h+x h^{2}+\frac{1}{3} h^{3}$. From this we get For $0=t_{0}<t_{1}<\ldots<t_{n}=t$ that

$$
\begin{aligned}
\frac{B_{t}^{3}}{3} & =\sum_{i=1}^{n} \frac{\left(B_{t_{i-1}}+\left(B_{t_{i}}-B_{t_{i-1}}\right)\right)^{3}}{3}-\frac{B_{t_{i-1}}^{3}}{3} \\
& =\sum_{i=1}^{n}\left(B_{t_{i-1}}\right)^{2}\left(B_{t_{i}}-B_{t_{i-1}}\right)+\sum_{i=1}^{n} B_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}+\frac{1}{3} \sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{3} .
\end{aligned}
$$

If the mesh of the partition tends to zero the first sum on the right hand side goes by the definition of stochastic integrals to $\int_{0}^{t} B_{s}^{2} d B_{s}$ (for a subsequence). The second sum converges by the independent and stationary increments of B_{t} to $\int_{0}^{t} B_{s} d s$ (for a subsequence). The last sum tends to zero (for a subsequence), since $E\left[\left|B_{t_{i}}-B_{t_{i-1}}\right|^{3}\right] \leq 6\left|t_{i}-t_{i-1}\right|^{3 / 2}$ (which is obtained by means of the Gaussian density of $\left.B_{t_{i}}-B_{t_{i-1}}\right)$.

Problem 4 (i) Payoff $X=1_{[10,20]}(S(T))$. We know that

$$
\text { ClaimValue }_{t}=E_{\widetilde{P}}\left[e^{-r(T-t)} X \mid \mathcal{F}_{t}\right]
$$

where \widetilde{P} is a probabilty measure such that $\widetilde{S}(t):=e^{-r t} S(t)$ is a martingale. By Itô's Lemma we have

$$
\widetilde{S}(t)=x+\int_{0}^{t}(\mu-r) S(s) d s+\int_{0}^{t} \sigma S(s) d B_{s}
$$

Defining $\widetilde{B}_{t}:=B_{t}-\int_{0}^{t} \lambda d s$, where $\lambda=\frac{r-\mu}{\sigma}$ we know by Girsanov's theorem that \widetilde{B}_{t} is a Brownian motion w.r.t. \widetilde{P} given by

$$
\begin{aligned}
\widetilde{P}(A) & :=E\left[1_{A} Z_{T}\right], A \in \mathcal{F}, \\
Z_{t} & :=\exp \left(\lambda B_{t}-\frac{1}{2} \lambda^{2}\right), 0 \leq t \leq T .
\end{aligned}
$$

Then

$$
\begin{aligned}
\widetilde{S}(t) & =x+\int_{0}^{t}(\mu-r) S(s) d s+\int_{0}^{t} \sigma S(s) d\left(\widetilde{B}_{s}+\lambda s\right) \\
& =\int_{0}^{t}((\mu-r)+\lambda \sigma) S(s) d s+\int_{0}^{t} \sigma S(s) d \widetilde{B}_{s}=\int_{0}^{t} \sigma S(s) d \widetilde{B}_{s}
\end{aligned}
$$

So $\widetilde{S}(t)$ is a martingale under \widetilde{P}. From the Itô-Lemma we know that

$$
S(t)=x \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}\right)=x \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \widetilde{B}_{t}\right)
$$

So for $t=T$ we get

$$
\begin{aligned}
S(T) & =x \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \widetilde{B}_{t}\right) \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right) \\
& =S(t) \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right)
\end{aligned}
$$

$S(t)$ is \mathcal{F}_{t}-adapted and as a function of \widetilde{B}_{t} independent of $\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)$. Further $\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)$ is independent of the events in \mathcal{F}_{t}. So we can treat $S(t)$ as a constant in the above conditional expectation and drop the conditioning on \mathcal{F}_{t}. Thus we get

$$
\text { ClaimValue }_{t}=C(t, S(t)),
$$

where

$$
\begin{align*}
C(t, y) & :=e^{-r(T-t)} E_{\widetilde{P}}\left[1_{[10,20]}\left(y \cdot \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right)\right)\right] \\
& =e^{-r(T-t)} \widetilde{P}\left(10 \leq y \cdot \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right) \leq 20\right) \\
& =e^{-r(T-t)} \widetilde{P}\left(\left(d_{1} \leq \xi \leq d_{2}\right)=e^{-r(T-t)}\left(\Phi\left(d_{2}\right)-\Phi\left(d_{1}\right)\right)\right. \tag{2}
\end{align*}
$$

where $\xi \sim \mathcal{N}(0,1), \Phi$ the standard normal distribution function and $d_{1}:=\left(\log (10 / y)-\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)\right) / \sigma \sqrt{T-t}, d_{2}:=\left(\log (20 / y)-\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)\right) / \sigma \sqrt{T-t}$.
(ii) Differentiation of the right hand side of (2) w.r.t. y in connection with the chain rule gives

$$
\frac{\partial}{\partial y} C(t, y)=-e^{-r(T-t)} \frac{1}{y \sigma \sqrt{T-t}}\left(\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} d_{2}^{2}\right)-\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} d_{1}^{2}\right)\right)
$$

Hence the replicating stock strategy at time t is given by $\left.\frac{\partial}{\partial y} C(t, y)\right|_{y=S(t)}$.
Problem 5 (i) We know from Problem 4 (i) that

$$
S(t)=x \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \widetilde{B}_{t}\right)
$$

So

$$
S(t)^{-1}=\frac{1}{x} \exp \left(\left(\frac{1}{2} \sigma^{2}-r\right) t-\sigma \widetilde{B}_{t}\right)
$$

Then using Itô's Lemma we find that $L(t):=S(t)^{-1}$ satisfies the SDE

$$
d L(t)=\left(\sigma^{2}-r\right) L(t) d t-\sigma L(t) d \widetilde{B}_{t}, L(0)=\frac{1}{x}
$$

Then integration by parts applied to $L(t)$ and $R(t)=\int_{0}^{t} \frac{1}{T} S(u) d u-K$ gives

$$
\begin{gathered}
d Y(t)=\left(\frac{1}{T}+\left(\sigma^{2}-r\right) Y(t)\right) d t-\sigma Y(t) d \widetilde{B}_{t} \\
Y(t)=\frac{-K}{x}+\frac{1}{T} \int_{0}^{t} L(s) S(s)(s) d s+\int_{0}^{t}\left(\sigma^{2}-r\right) S(s) R(s) d s-\int_{0}^{t} \sigma L(s) R(s) d \widetilde{B}_{s} \\
\frac{-K}{x}+\int_{0}^{t}\left(\frac{1}{T}+\left(\sigma^{2}-r\right) Y(s)\right) d s-\int_{0}^{t} \sigma Y(s) d \widetilde{B}_{s} .
\end{gathered}
$$

(ii) Using the same probability measure \widetilde{P} as in Problem 4 we have that

$$
\begin{aligned}
H(t) & =\text { ClaimValue } \\
& =E_{\widetilde{P}}\left[e^{-r(T-t)} X \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} E_{\widetilde{P}}\left[\left.\left(R(t)+\frac{1}{T} \int_{t}^{T} S(s) d s-K\right)_{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} E_{\widetilde{P}}\left[\left.\left(R(t)+\frac{1}{T} \int_{t}^{T} S(s) d s-K\right)_{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =e_{\widetilde{P}}\left[\left.\left(S(t)\left(Y(t)+\frac{1}{T} \int_{t}^{T} S(t)^{-1} S(s) d s\right)\right)_{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =t(T) E_{\widetilde{P}}\left[\left.\left(Y(t)+\frac{1}{T} \int_{t}^{T} S_{s}^{t} d s\right)_{+} \right\rvert\, \mathcal{F}_{t}\right]
\end{aligned}
$$

where $S_{s}^{t}:=\exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(s-t)+\sigma\left(\widetilde{B}_{s}-\widetilde{B}_{t}\right)\right)$. Since the increments $\widetilde{B}_{s}-\widetilde{B}_{t}$ are independent of the events in $\mathcal{F}_{t}, t<s \leq T\left(\mathcal{F}_{t}\right.$ is also the natural filtration of \widetilde{B}_{t}) the random variable $\frac{1}{T} \int_{t}^{T} S_{s}^{t} d s$ as a Riemann integral on $(t, T]$ is independent of events in \mathcal{F}_{t}. Then we can argue just as in probblem 4 (i) and get $F(t, y)=E_{\widetilde{P}}\left[\left(y+\frac{1}{T} \int_{t}^{T} S_{s}^{t} d s\right)_{+}\right]$

