Solution Exam

Problem 1

a) A Brownian motion is a stochastic process W satisfying:

1. W has continuous paths P-a.s.,
2. $W_{0}=0, P$-a.s.,
3. W has independent increments,
4. for all $0 \leq s<t$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.

A \mathbb{F}-Brownian motion is a process W which \mathbb{F}-adapted and satisfies:

1. W has continuous paths P-a.s.,
2. $W_{0}=0, P$-a.s.,
3. for all $0 \leq s<t$, the random variable $W_{t}-W_{s}$ is independent of \mathcal{F}_{s},
4. for all $0 \leq s<t$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.
b) An alternative definition of Brownian motion is that it is a Gaussian process with continuous paths and mean function identically equal to zero and covariance function equal to $\min (s, t)$. For $a>0$, the process $X_{t}=a^{-1 / 2} W_{a t}$ has continuous paths P-a.s. because W is a Brownian motion and it has continuos paths P-a.s.. Moreover, X_{t} is a Gaussian process because, for $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the vector ($a^{-1 / 2} W_{a t_{1}}, \ldots, a^{-1 / 2} W_{a t_{n}}$) is multivariate Gaussian (it is a linear transform of $\left(W_{a t_{1}}, \ldots, W_{a t_{n}}\right)$, which is multivariate Gaussian because W is a Gaussian process). Finally, the mean and covariance function of X are given by

$$
\begin{aligned}
\mathbb{E}\left[X_{t}\right] & =\mathbb{E}\left[a^{-1 / 2} W_{a t}\right]=a^{-1 / 2} \mathbb{E}\left[W_{a t}\right]=0, \\
\operatorname{Cov}\left(X_{s}, X_{t}\right) & =\mathbb{E}\left[\left(X_{t}-\mathbb{E}\left[X_{t}\right]\right)\left(X_{s}-\mathbb{E}\left[X_{s}\right]\right)\right]=\mathbb{E}\left[X_{s} X_{t}\right] \\
& =\mathbb{E}\left[a^{-1 / 2} W_{a s} a^{-1 / 2} W_{a t}\right]=\frac{1}{a} \mathbb{E}\left[W_{a s} W_{a t}\right] \\
& =\frac{1}{a} \min (a s, a t)=\min (s, t),
\end{aligned}
$$

where we have used that W is a Brownian motion. If $a>1$ we have that X_{t} cannot be a \mathbb{F}-Brownian motion because X_{t} depend on $W_{a t}$, which is not \mathcal{F}_{t} measurable and, hence, X is not \mathbb{F}-adapted. On the other hand, if $a<1$ then the increments

$$
X_{t}-X_{s}=a^{-1 / 2}\left(W_{a t}-W_{a s}\right)
$$

are not independent from from \mathcal{F}_{s} for all $0 \leq s<t$. If we choose $s<t$, satisfying also that $a<s / t$, we get that $W_{a t}-W_{a s}$ is \mathcal{F}_{s}-measurable and, therefore, $X_{t}-X_{s}$ is also \mathcal{F}_{s}-measurable and cannot be independent of \mathcal{F}_{s}.
c) Assume that we have $n+1$ daily observation of the price process $\left\{S_{i}\right\}_{i=0, \ldots, n}$. Let $r_{i}=\log \left(\frac{S_{i}}{S_{i-1}}\right), i=$ $1, \ldots, n$ be the series of logreturns. The maximum likelihood estimators of μ and σ (anualized) are given by

$$
\hat{\mu}=\frac{1}{n \Delta t} \sum_{i=1}^{n} r_{i}
$$

and

$$
\widehat{\sigma}=\sqrt{\frac{1}{(n-1) \Delta t} \sum_{i=1}^{n}\left(r_{i}-\hat{\mu}\right)^{2}},
$$

where $\Delta t=1 / 252$.
d) The t arbitrage free price of a contingent claim H of the form $h\left(S_{T}\right)$ is given by $f\left(t, S_{t}\right)$, where the function $f(t, x)$ is given by the following expectation $e^{-r(T-t)} \mathbb{E}\left[h\left(Z_{T}^{t, x}\right)\right]$ where $\log \left(Z_{T}^{t, x}\right) \sim$ $\mathcal{N}\left(\log (x)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t), \sigma^{2}(T-t)\right)$ The Monte Carlo method is based in the law of large numbers that roughly states that we can approximate an expectation by its sample mean. In our case, let $\left\{y_{i}\right\}_{i=1, \ldots, N}$ be N independent outcomes of a $\mathcal{N}(0,1)$. Then

$$
z_{i}=x \exp \left(\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+\sigma \sqrt{T-t} y_{i}\right), \quad i=1, \ldots, N
$$

are N independent outcomes of $Z_{T}^{t, x}$ and we approximate $f(t, x)$ by

$$
e^{-r(T-t)} \sum_{i=1}^{n} h\left(z_{i}\right) .
$$

The central limit theorem yields a rate of convergence for the method of $1 / \sqrt{N}$.

Problem 2

a) $L_{a, T}^{2}$ is the class of processes that are measurable, \mathbb{F}-adapted and square integrable (with respect to $\lambda \otimes P)$. That is, the class of measurable processes h such that h_{t} is \mathcal{F}_{t}-measurable for all $t \in[0, T]$ and

$$
\|h\|_{L_{a, T}^{2}}^{2}:=\mathbb{E}\left[\int_{0}^{T}\left|h_{t}\right|^{2} d t\right]<\infty .
$$

The Itô isometry states that if $h \in L_{a, T}^{2}$ then

$$
E\left[\left(\int_{0}^{T} h_{t} d W_{t}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{T}\left|h_{t}\right|^{2} d t\right]=\|h\|_{L_{a, T}^{2}}^{2} .
$$

W belongs to $L_{a, T}^{2}$ because it is measurable, \mathbb{F}-adapted and

$$
\mathbb{E}\left[\int_{0}^{T}\left|W_{t}\right|^{2} d t\right]=\int_{0}^{T} \mathbb{E}\left[\left|W_{t}\right|^{2}\right] d t=\int_{0}^{T} t d t=\frac{T^{2}}{2}<\infty .
$$

By the Itô isometry we have that

$$
E\left[\left(\int_{0}^{T} W_{t} d W_{t}\right)^{2}\right]=\frac{T^{2}}{2}
$$

b) The Itô formula is as follows: Let $f \in C^{1,2}([0, T] \times \mathbb{R})$, that is, $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial t}, \frac{\partial f}{\partial x}$ and $\frac{\partial^{2} f}{\partial x^{2}}$ are continuous functions. Assume that

$$
\mathbb{E}\left[\int_{0}^{T}\left\{\left(\frac{\partial f}{\partial t}\left(t, W_{t}\right)\right)^{2}+\left(\frac{\partial^{2} f}{\partial x^{2}}\left(t, W_{t}\right)\right)^{2}+\left(\frac{\partial f}{\partial x}\left(t, W_{t}\right)\right)^{2}\right\} d t\right]<\infty
$$

Then,

$$
f\left(t, W_{t}\right)=f(0,0)+\int_{0}^{t}\left\{\frac{\partial f}{\partial t}\left(s, W_{s}\right)+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(s, W_{s}\right)\right\} d s+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, W_{s}\right) d W_{s}
$$

for $0 \leq t \leq T$ and it is also an L^{2}-Itô process. We have that $e^{t / 2} \sin \left(W_{t}\right)$ is of the form $f\left(t, W_{t}\right)$ with $f(t, x)=e^{t / 2} \sin (x)$. Therefore,

$$
\begin{aligned}
\frac{\partial}{\partial t} f(t, x) & =\frac{1}{2} e^{t / 2} \sin (x)=\frac{1}{2} f(t, x) \\
\frac{\partial f}{\partial x}(t, x) & =e^{t / 2} \cos (x) \\
\frac{\partial^{2} f}{\partial x^{2}}(t, x) & =-e^{t / 2} \sin (x)=-f(t, x) .
\end{aligned}
$$

Hence, applying Itô's formula, we get that

$$
\begin{aligned}
e^{t / 2} \sin \left(W_{t}\right) & =f(0,0)+\int_{0}^{t}\left\{\frac{1}{2} f\left(s, W_{s}\right)-\frac{1}{2} f\left(s, W_{s}\right)\right\} d s+\int_{0}^{t} e^{s / 2} \cos \left(W_{s}\right) d W_{s} \\
& =\int_{0}^{t} e^{s / 2} \cos \left(W_{s}\right) d W_{s}
\end{aligned}
$$

c) The martingale representation theorem is as follows: Let $M=\left\{M_{t}\right\}_{t \in[0, T]}$ be a square integrable
\mathbb{F}-martingale. Then, there exists a unique $h \in L_{a, T}^{2}$ such that

$$
M_{t}=\mathbb{E}\left[M_{0}\right]+\int_{0}^{t} h_{s} d W_{s}
$$

As

$$
e^{t / 2} \sin \left(W_{t}\right)=\int_{0}^{t} e^{s / 2} \cos \left(W_{s}\right) d W_{s}
$$

and

$$
\mathbb{E}\left[\int_{0}^{T}\left|e^{s / 2} \cos \left(W_{s}\right)\right|^{2} d s\right] \leq T e^{T}<\infty
$$

we have that $h_{s}=e^{s / 2} \cos \left(W_{s}\right)$ is the kernel in the martingale representation of $e^{t / 2} \sin \left(W_{t}\right)$.
d) A sufficient condition is that $f(t, x)$ satisfies the partial differential equation

$$
\frac{\partial f}{\partial t}(t, x)+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x)=0
$$

and

$$
\mathbb{E}\left[\int_{0}^{T}\left(\frac{\partial f}{\partial x}\left(t, W_{t}\right)\right)^{2} d t\right]<\infty
$$

Problem 3

a) A portfolio $\phi=\left\{\phi^{0}, \phi^{1}\right\}$ is self-financing if its value process

$$
\begin{equation*}
V_{t}(\phi)=\phi_{t}^{0} e^{r t}+\phi_{t}^{1} S_{t} \tag{1}
\end{equation*}
$$

is an Itô process satisfying

$$
\begin{equation*}
d V_{t}(\phi)=r e^{r t} \phi_{t}^{0} d t+\phi_{t}^{1} d S_{t} . \tag{2}
\end{equation*}
$$

By the integration by parts formula we have that the discounted value of the portfolio has the dynamics

$$
d \tilde{V}_{t}(\phi)=d\left(e^{-r t} V_{t}(\phi)\right)=-r e^{-r t} V_{t}(\phi) d t+e^{-r t} d V_{t}(\phi)+\left(d e^{-r t}\right)\left(d S_{t}\right)
$$

plugging equations (1) and (2) taking into account that $\left(d e^{-r t}\right)\left(d S_{t}\right)=0$, we get that

$$
\begin{aligned}
d \tilde{V}_{t}(\phi) & =-r e^{-r t} \phi_{t}^{0} e^{r t} d t-r e^{-r t} \phi_{t}^{1} S_{t} d t+e^{-r t} r e^{r t} \phi_{t}^{0} d t+e^{-r t} \phi_{t}^{1} d S_{t} \\
& =-r e^{-r t} \phi_{t}^{1} S_{t} d t+e^{-r t} \phi_{t}^{1} d S_{t}=\phi_{t}^{1}\left\{d\left(e^{-r t}\right) S_{t}+e^{-r t} d S_{t}\right\} \\
& =\phi_{t}^{1} d\left(e^{-r t} S_{t}\right)=\phi_{t}^{1} d\left(\tilde{S}_{t}\right),
\end{aligned}
$$

which is the resu
b) Consider the measure Q on \mathcal{F}_{T} given by

$$
\frac{d Q}{d P}=\exp \left(-\frac{\mu-r}{\sigma} W_{T}-\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2} T\right)
$$

By Girsanov's Theorem we have that

$$
\tilde{W}_{t}=\frac{\mu-r}{\sigma} t+W_{t}
$$

is a Brownian motion under Q. We can write the dynamics of S_{t} using \tilde{W}, i.e,

$$
\begin{aligned}
d S_{t} & =\mu S_{t} d t+\sigma S_{t} d W_{t}=\mu S_{t} d t+\sigma S_{t}\left\{d \tilde{W}_{t}-\frac{\mu-r}{\sigma} d t\right\} \\
& =\left\{\mu-\sigma \frac{\mu-r}{\sigma}\right\} S_{t} d t+\sigma S_{t} d \tilde{W}_{t} \\
& =r S_{t} d t+\sigma S_{t} d \tilde{W}_{t},
\end{aligned}
$$

and using the integration by parts formula, taking into account that $d\left(e^{-r t}\right) d S_{t}=0$ we get that

$$
\begin{align*}
d\left(\tilde{S}_{t}\right) & =d\left(e^{-r t} S_{t}\right)=d\left(e^{-r t}\right) S_{t}+e^{-r t} d S_{t}+d\left(e^{-r t}\right) d S_{t} \\
& =-r e^{-r t} S_{t} d t+e^{-r t} d S_{t}=-r e^{-r t} S_{t} d t+e^{-r t}\left\{r S_{t} d t+\sigma S_{t} d \tilde{W}_{t}\right\} \\
& =\sigma e^{-r t} S_{t} d \tilde{W}_{t}=\sigma \tilde{S}_{t} d \tilde{W}_{t} \tag{3}
\end{align*}
$$

which can be written explicitly as

$$
\tilde{S}_{t}=\exp \left(\sigma \tilde{W}_{t}-\frac{\sigma^{2}}{2} t\right)
$$

As \tilde{W} is a Brownian motion under Q, we get that \tilde{S}_{t} is an exponential martingale under Q. Alternatively, equation (3) says that S_{t} is an Itô integral with respect to a Brownian motion under Q and, hence, a martingale under Q.
c) Let ϕ be an admissible replicating portfolio for H. The discounted value process of ϕ is a martingale under Q because ϕ is admissible and, in addition, $\tilde{V}_{T}(\phi)=e^{-r T} H$. Hence,

$$
e^{-r t} V_{t}(\phi)=\tilde{V}_{t}(\phi)=\mathbb{E}_{Q}\left[\tilde{V}_{T}(\phi) \mid \mathcal{F}_{t}\right]=\mathbb{E}_{Q}\left[e^{-r T} H \mid \mathcal{F}_{t}\right]
$$

which yields $V_{t}(\phi)=\mathbb{E}_{Q}\left[e^{-r(T-t)} H \mid \mathcal{F}_{t}\right]$ and as $\pi_{t}(\phi)=V_{t}(\phi)$ we get the result.
d) In the Black-Scholes model we have the following formulas for the price process and hedging strategy of a contingent claim of the form $H=h\left(S_{T}\right)$.

$$
\pi_{t}(H)=f\left(t, S_{t}\right)
$$

and

$$
\left(\phi_{t}^{0}, \phi_{t}^{1}\right)=\left(e^{-r t}\left\{f\left(t, S_{t}\right)-S_{t} \frac{\partial f}{\partial x}\left(t, S_{t}\right)\right\}, \frac{\partial f}{\partial x}\left(t, S_{t}\right)\right), \quad t \in[0, T]
$$

where

$$
f(t, x)=e^{-r(T-t)} \mathbb{E}\left[h\left(Z_{T}^{t, x}\right)\right]
$$

and $\log Z_{T}^{t, x} \sim \mathcal{N}\left(\log (x)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t), \sigma^{2}(T-t)\right)$. In our case $h(x)=x^{2}$ and, using the moment generating function of a normal distribution, we get that

$$
\begin{aligned}
f(t, x) & =e^{-r(T-t)} \mathbb{E}\left[\left(Z_{T}^{t, x}\right)^{2}\right]=e^{-r(T-t)} \mathbb{E}\left[\left(\exp \left(\log \left(Z_{T}^{t, x}\right)\right)\right)^{2}\right] \\
& =e^{-r(T-t)} \mathbb{E}\left[\exp \left(2 \log \left(Z_{T}^{t, x}\right)\right)\right]=e^{-r(T-t)} \mathbb{E}\left[\exp \left(2 \log \left(Z_{T}^{t, x}\right)\right)\right] \\
& =e^{-r(T-t)} \exp \left(2\left(\log (x)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)\right)+\frac{\sigma^{2}(T-t)}{2} 4\right) \\
& =x^{2} \exp \left(r(T-t)+\sigma^{2}(T-t)\right)
\end{aligned}
$$

and $\frac{\partial f}{\partial x}(t, x)=2 x \exp \left(r(T-t)+\sigma^{2}(T-t)\right)$. Plugging $x=S_{t}$ in $f(t, x)$ and $\frac{\partial f}{\partial x}(t, x)$ we get the results for $\pi_{t}(H)$ and $\left(\phi_{t}^{0}, \phi_{t}^{1}\right)$.

Problem 4

Let (Ω, \mathcal{F}, P) be a probability space.
a) X is a random variable if the mapping X is $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$-measurable. For any $B \in \mathcal{B}(\mathbb{R})$ we have that

$$
X^{-1}(B)=\left\{\begin{array}{lll}
\Omega & \text { if } & K \in B \\
\varnothing & \text { if } & K \notin B
\end{array} .\right.
$$

As \varnothing and Ω belong to any σ-algebra \mathcal{F}, one has that constant functions are always random variables.
b) Q is absolutely continuous with respect to $P(Q \ll P)$ if

$$
\forall B \in \mathcal{F}, \quad P(A)=0 \Rightarrow Q(A)=0
$$

P and Q are equivalent if $Q \ll P$ and $P \ll Q$.
c) Let P and Q two probability measures on a measurable space (Ω, \mathcal{F}). Then the following two statements are equivalent:

1. $Q \ll P$.
2. There exists a measurable function $f: \Omega \rightarrow \mathbb{R}_{+}$such that $f=\frac{d Q}{d P}$.

If $Q \ll P$ and $g: \Omega \rightarrow \mathbb{R}$ is a measurable function we have that

$$
\begin{equation*}
\mathbb{E}_{Q}[g]=\mathbb{E}_{P}\left[g \frac{d Q}{d P}\right] . \tag{4}
\end{equation*}
$$

Therefore, if $R \ll Q \ll P$, for any $B \in \mathcal{F}$, we have that

$$
\begin{equation*}
R(B)=\mathbb{E}_{R}\left[\mathbf{1}_{B}\right]=\mathbb{E}_{Q}\left[\mathbf{1}_{B} \frac{d R}{d Q}\right]=\mathbb{E}_{P}\left[\mathbf{1}_{B} \frac{d R}{d Q} \frac{d Q}{d P}\right] \tag{5}
\end{equation*}
$$

where we have used twice the property (4). Equality (5) yields the result.
d) $\mathbb{E}[X \mid \mathcal{G}]$ is the unique \mathcal{G}-measurable random variable satisfying

$$
\mathbb{E}\left[X \mathbf{1}_{B}\right]=\mathbb{E}\left[\mathbb{E}[X \mid \mathcal{G}] 1_{B}\right], \quad B \in \mathcal{G}
$$

Let's check that $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X] . \mathbb{E}[X]$ is constant and by a) is measureable with respect to any σ-algebra, in particular \mathcal{G}. Moreover, for any $B \in \mathcal{G}$, one has

$$
\mathbb{E}\left[\mathbb{E}[X] \mathbf{1}_{B}\right]=\mathbb{E}[X] P(B)
$$

On the other hand using that X and $\mathbf{1}_{B}$ are independent we get that

$$
\mathbb{E}\left[X \mathbf{1}_{B}\right]=\mathbb{E}[X] \mathbb{E}\left[\mathbf{1}_{B}\right]=\mathbb{E}[X] P(B),
$$

so we can conclude.

