UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: STK4510 — Introduction to methods and techniques

in financial mathematics

Day of examination: Thursday, December 5, 2013

Examination hours: 09.00 – 13.00

This exercise set consists of 4 pages.

Appendices: None

Permitted aids: None.

Please make sure that your copy of the exercise set is complete before you attempt to answer anything.

All exercises count equally

Exercise 1

Let B(t) for $t \geq 0$ be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ where \mathcal{F}_t is the filtration.

1a

What is the probability distribution of B(t) for a given time t > 0?

1b

Calculate

$$\mathbb{E}[(B(t) - B(s))(B(v) - B(u))]$$

for $t > s \ge v > u$. Explain how you found your answer.

1c

Let S(t) be the stock price at time t defined as a geometric Brownian motion of the form

$$S(t) = S(0) \exp(\mu t + \sigma B(t))$$

for μ and $\sigma > 0$ being constants. What statistical properties do the logreturns (logarithmic returns) of the stock price have?

1d

Explain why the process

$$Y(t) = \int_0^t X(s) \, dB(s)$$

is \mathcal{F}_t -adapted, where X is an Ito integrable process.

(Continued on page 2.)

Exercise 2

2a

Let X(t) be an Ito diffusion, and $f:[0,T]\times\mathbb{R}\mapsto\mathbb{R}$ a function which is continuously differentiable with respect to time t and twice continuously differentiable with respect to space x. State the Ito Formula for the process Y(t)=f(t,X(t)).

2b

X(t) is a geometric Brownian motion

$$X(t) = \exp(t + 2dB(t))$$

where B is a Brownian motion. What is dX(t)?

2c

Use Ito's Formula to find Y(t) where Y(t) is the solution of the stochastic differential equation

$$dY(t) = -\alpha Y(t) dt + \sigma dB(t)$$

where α, σ are two positive constants and Y(0) = y, is a given constant.

Exercise 3

3a

Define what is a martingale M(t) with respect to the filtration \mathcal{F}_t generated by Brownian motion B(t). Show that $\mathbb{E}[M(t)] = M(0)$, for M(0) a constant.

3b

We know from the martingale representation theorem that if M(t) has finite variance, there exists an Ito integrable process Y(t) such that

$$M(t) = M(0) + \int_0^t Y(s) dB(s)$$

Show that this representation is unique.

3c

Apply Ito's Formula to find a process Z(t) such that

$$M(t) = B^3(t) - Z(t)$$

is a martingale. What is the process Y in the martingale representation theorem for this martingale?

3d

Let S(t) be a geometric Brownian motion

$$dS(t) = \mu S(t) dt + \sigma S(t) dB(t)$$

Find a probability Q and a Q-Brownian motion W(t) such that the process $e^{-rt}S(t)$ becomes a Q-martingale. Here r>0 is the risk-free interest rate.

3e

Let X be a contingent claim, that is, an \mathcal{F}_T -measurable random variable with finite variance (with respect to Q). Define what we mean by a replicating portfolio of X, and show that the discounted value of this replicating portfolio is a Q-martingale.

3f

Show that the arbitrage-free price of X is

$$P(t) = e^{-r(T-t)} \mathbb{E}_Q[X \mid \mathcal{F}_t]$$

for $t \leq T$.

Exercise 4

In this Exercise you are going to derive an approximation of the price of a call option written on a portfolio of two assets. Let the price of the two assets be given by a bivariate geometric Brownian motion

$$dS_1(t) = rS_1(t) dt + S_1(t)\sigma_1 dW_1(t)$$

$$dS_2(t) = rS_2(t) dt + S_2(t)\sigma_2 \left(\rho dW_1(t) + \sqrt{1 - \rho^2} dW_2(t)\right),$$

under the equivalent martingale measure Q.

4a

Show that

$$S_1(t) = S_1(0) \exp\left(\left(r - \frac{1}{2}\sigma_1^2\right) t + \sigma_1 W_1(t)\right)$$

$$S_2(t) = S_2(0) \exp\left(\left(r - \frac{1}{2}\sigma_2^2\right) t + \sigma_2\left(\rho W_1(t) + \sqrt{1 - \rho^2}W_2(t)\right)\right)$$

4b

We want to price a call option written on a portfolio consisting of the sum of asset 1 and asset 2. The exercise time is T and strike price is K. Argue that the arbitrage-free price of this option at time $t \leq T$ is given by

$$P(t) = e^{-r(T-t)} \mathbb{E}_{Q} \left[\max \left(S_1(T) + S_2(T) - K, 0 \right) \mid \mathcal{F}_t \right]$$

where r > 0 is the risk-free interest rate and \mathcal{F}_t the given filtration.

(Continued on page 4.)

4c

There is no analytic pricing formula for this option, so we will consider an approximation in this Exercise for P(0), that is, the price at time t=0. Introduce a random variable X which is normally distributed under Q with mean a and variance b^2 , for two constants a and b>0. Derive the equations for a and b such that

$$\mathbb{E}_{Q}[S_{1}(T) + S_{2}(T)] = \mathbb{E}_{Q}[\exp(X)]$$

$$\mathbb{E}_{Q}[(S_{1}(T) + S_{2}(T))^{2}] = \mathbb{E}_{Q}[\exp(2X)]$$

Note: you do not need to solve the equations!

4d

We approximate the price P(0) by

$$P(0) \approx e^{-rT} \mathbb{E}_Q \left[\max \left(e^X - K, 0 \right) \right]$$

Compute the approximate price.

4e

Explain how you can modify the above analysis to approximate P(t) for an arbitrary time $t \leq T$.

END