Introduction to methods and techniques in financial mathematics (STK 4510) Solutions to the exam, 04.12.2014

Problem 1 Denote by $X(i):=\log \left(S\left(t_{i+1}\right) / S\left(t_{i}\right)\right)$ the $i-$ th log-return. Then we use the MLE estimators $\widehat{\mu}=\frac{1}{N} \sum_{i=1}^{N} X(i)$ and $\widehat{\sigma}=\frac{1}{N} \sum_{i=1}^{N}(X(i)-$ $\widehat{\mu})^{2}$ for $N=5$ to obtain

$$
\widehat{\mu}=0.00148286, \widehat{\sigma}=0.00189397
$$

Problem 2 We have to study the solutions $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$ to the linear system of equations (see e.g. Th. 5.20 of the course manuscript):

$$
\begin{aligned}
& \alpha_{1}-r+\sigma_{11} \lambda_{1}+\sigma_{12} \lambda_{2}=0 \\
& \alpha_{2}-r+\sigma_{21} \lambda_{1}+\sigma_{22} \lambda_{2}=0 .
\end{aligned}
$$

Denote by $\sigma=\left(\sigma_{i j}\right)_{1 \leq i, j \leq 2}$. Then $\operatorname{det}(\sigma)=0.30 \cdot 0.25-0.20 \cdot 0.375=0$. So $\operatorname{rank}(\sigma)<m=2$. The latter implies (by Th. 5.20) that the BS-market is not complete.

Substitution of λ_{1} in the first equation gives

$$
\begin{equation*}
\alpha_{1}-r+\frac{\sigma_{11}}{\sigma_{21}}\left(r-\alpha_{2}\right)-\frac{\operatorname{det}(\sigma)}{\sigma_{21}} \lambda_{2}=\alpha_{1}-r+\frac{\sigma_{11}}{\sigma_{21}}\left(r-\alpha_{2}\right)=0 \tag{1}
\end{equation*}
$$

So the market has no arbitrage if and only if equation (1) holds.
Problem 3 (i) Let $\mathcal{F}_{t}, 0 \leq t \leq T$ be a filtration. A process $X(t)$ is a \mathcal{F}_{t}-martingale iff (i) $E\left[\left|X_{t}\right|\right]<\infty$ for all t (ii) X_{t} is \mathcal{F}_{t}-adapted and (iii) $E\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$ for $t \geq s$.
(ii) Conditions (i) and (ii) are clearly fulfilled by B_{t}. Since $B_{t}-B_{s}$ is independent of B_{s} for $t>s$ we find

$$
\begin{aligned}
E\left[B_{t} \mid \mathcal{F}_{s}\right] & =E\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=E\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+E\left[B_{s} \mid \mathcal{F}_{s}\right] \\
& =E\left[B_{t}-B_{s}\right]+B_{s}=B_{s}
\end{aligned}
$$

As for $\left(B_{t}\right)^{2}$ we know by Itô's Lemma that $\left(B_{t}\right)^{2}=2 \int_{0}^{t} B_{s} d B_{s}+t$. Since $E\left[\int_{0}^{T}\left(B_{s}\right)^{2} d s\right]<\infty, 2 \int_{0}^{r} B_{s} d B_{s}$ is a martingale. Hence we get

$$
E\left[2 \int_{0}^{t} B_{s} d B_{s}+t \mid \mathcal{F}_{s}\right]=\int_{0}^{s} B_{s} d B_{s}+t \neq \int_{0}^{s} B_{s} d B_{s}+s \text { for } t>s
$$

So the second process is not a martingale.
(iii) Observe that $\frac{(x+h)^{3}}{3}-\frac{x^{3}}{3}=x^{2} h+x h^{2}+\frac{1}{3} h^{3}$. From this we get For $0=t_{0}<t_{1}<\ldots<t_{n}=t$ that

$$
\begin{aligned}
\frac{B_{t}^{3}}{3} & =\sum_{i=1}^{n} \frac{\left(B_{t_{i-1}}+\left(B_{t_{i}}-B_{t_{i-1}}\right)\right)^{3}}{3}-\frac{B_{t_{i-1}}^{3}}{3} \\
& =\sum_{i=1}^{n}\left(B_{t_{i-1}}\right)^{2}\left(B_{t_{i}}-B_{t_{i-1}}\right)+\sum_{i=1}^{n} B_{t_{i-1}}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{2}+\frac{1}{3} \sum_{i=1}^{n}\left(B_{t_{i}}-B_{t_{i-1}}\right)^{3} .
\end{aligned}
$$

If the mesh of the partition tends to zero the first sum on the right hand side goes by the definition of stochastic integrals to $\int_{0}^{t} B_{s}^{2} d B_{s}$ (for a subsequence). The second sum converges by the independent and stationary increments of B_{t} to $\int_{0}^{t} B_{s} d s$ (for a subsequence). The last sum tends to zero (for a subsequence), since $E\left[\left|B_{t_{i}}-B_{t_{i-1}}\right|^{3}\right] \leq 6\left|t_{i}-t_{i-1}\right|^{3 / 2}$ (which is obtained by means of the Gaussian density of $\left.B_{t_{i}}-B_{t_{i-1}}\right)$.

Problem 4 (i) Payoff $X=1_{[20,30]}(S(T))$. We know that

$$
\text { ClaimValue }_{t}=E_{\widetilde{P}}\left[e^{-r(T-t)} X \mid \mathcal{F}_{t}\right]
$$

where \widetilde{P} is a probabilty measure such that $\widetilde{S}(t):=e^{-r t} S(t)$ is a martingale. By Itô's Lemma we have

$$
\widetilde{S}(t)=x+\int_{0}^{t}(\mu-r) \widetilde{S}(s) d s+\int_{0}^{t} \sigma \widetilde{S}(s) d B_{s}
$$

Defining $\widetilde{B}_{t}:=B_{t}-\int_{0}^{t} \lambda d s$, where $\lambda=\frac{r-\mu}{\sigma}$ we know by Girsanov's theorem that \widetilde{B}_{t} is a Brownian motion w.r.t. \widetilde{P} given by

$$
\begin{aligned}
\widetilde{P}(A) & :=E\left[1_{A} Z_{T}\right], A \in \mathcal{F} \\
Z_{t} & :=\exp \left(\lambda B_{t}-\frac{1}{2} \lambda^{2} t\right), 0 \leq t \leq T
\end{aligned}
$$

Then

$$
\begin{aligned}
\widetilde{S}(t) & =x+\int_{0}^{t}(\mu-r) S(s) d s+\int_{0}^{t} \sigma S(s) d\left(\widetilde{B}_{s}+\lambda s\right) \\
& =\int_{0}^{t}((\mu-r)+\lambda \sigma) S(s) d s+\int_{0}^{t} \sigma S(s) d \widetilde{B}_{s}=\int_{0}^{t} \sigma S(s) d \widetilde{B}_{s}
\end{aligned}
$$

So $\widetilde{S}(t)$ is a martingale under \widetilde{P}. From the Itô-Lemma we know that

$$
S(t)=x \exp \left(\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}\right)=x \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \widetilde{B}_{t}\right)
$$

So for $t=T$ we get

$$
\begin{aligned}
S(T) & =x \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma \widetilde{B}_{t}\right) \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right) \\
& =S(t) \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right)
\end{aligned}
$$

$S(t)$ is $\mathcal{F}_{t^{-}}$-adapted and as a function of \widetilde{B}_{t} independent of $\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)$. Further $\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)$ is independent of the events in \mathcal{F}_{t}. So we can treat $S(t)$ as a constant in the above conditional expectation and drop the conditioning on \mathcal{F}_{t}. Thus we get

$$
\text { ClaimValue }_{t}=C(t, S(t)),
$$

where

$$
\begin{align*}
C(t, y) & :=e^{-r(T-t)} E_{\widetilde{P}}\left[1_{[20,30]}\left(y \cdot \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right)\right)\right] \\
& =e^{-r(T-t)} \widetilde{P}\left(10 \leq y \cdot \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(\widetilde{B}_{T}-\widetilde{B}_{t}\right)\right) \leq 20\right) \\
& =e^{-r(T-t)} \widetilde{P}\left(\left(d_{1} \leq \xi \leq d_{2}\right)=e^{-r(T-t)}\left(\Phi\left(d_{2}\right)-\Phi\left(d_{1}\right)\right)\right. \tag{2}
\end{align*}
$$

where $\xi \sim \mathcal{N}(0,1), \Phi$ the standard normal distribution function and

$$
\begin{aligned}
d_{1} & :=\left(\log (20 / y)-\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)\right) / \sigma \sqrt{T-t} \\
d_{2}: & :\left(\log (30 / y)-\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)\right) / \sigma \sqrt{T-t}
\end{aligned}
$$

(ii) Differentiation of the right hand side of (2) w.r.t. y in connection with the chain rule gives

$$
\frac{\partial}{\partial y} C(t, y)=-e^{-r(T-t)} \frac{1}{y \sigma \sqrt{T-t}}\left(\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} d_{2}^{2}\right)-\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} d_{1}^{2}\right)\right)
$$

Hence the replicating stock strategy at time t is given by $\left.\frac{\partial}{\partial y} C(t, y)\right|_{y=S(t)}$.

Problem 5 Denote by C_{i} the solution of the Black-Scholes partial differential equation w.r.t. the terminal condition $C_{i}(T, x)=\max (0, x-K)$ and volatility $\sigma_{i}, i=1,2$.

Using Girsanov's theorem, we find that

$$
d S(t)=r S(t) d t+\widetilde{\sigma}(t) S(t) d \widetilde{B}_{t}
$$

where

$$
\widetilde{B}_{t}=B_{t}-\int_{0}^{t} \frac{r-\mu}{\widetilde{\sigma}(s)} d s
$$

is a Brownian motion under the probability measure \widetilde{P} given by

$$
\widetilde{P}(A)=E\left[\mathbf{1}_{A} Z_{T}\right], A \in \mathcal{F}
$$

for

$$
Z_{t}=\exp \left(\int_{0}^{t} \frac{r-\mu}{\widetilde{\sigma}(s)} d B_{s}-\frac{1}{2} \int_{0}^{t}\left(\frac{r-\mu}{\widetilde{\sigma}(s)}\right)^{2} d s\right), 0 \leq t \leq T
$$

Then Itô's Lemma applied to $S(t), 0 \leq t \leq T$ and $e^{-r t} C_{1}(t, x)$ under \widetilde{P} gives

$$
\begin{align*}
& e^{-r t} C(t, S(t)) \\
= & C_{1}(0, S(0))+\int_{0}^{t}\left\{(-r) e^{-r s} C_{1}(s, S(s))+e^{-r s} \frac{\partial C_{1}}{\partial s}(s, S(s))\right\} d s \\
& +\int_{0}^{t} e^{-r s} \frac{\partial C_{1}}{\partial x}(s, S(s)) r S(s) d s+\int_{0}^{t} e^{-r s} \frac{\partial C_{1}}{\partial x}(s, S(s)) \widetilde{\sigma}(s) S(s) d \widetilde{B}_{s} \\
& +\frac{1}{2} \int_{0}^{t} e^{-r s} \frac{\partial^{2} C_{1}}{\partial x^{2}}(s, S(s))(\widetilde{\sigma}(s) S(s))^{2} d s . \tag{3}
\end{align*}
$$

We also obtain from differentiation of the stochastic representation of C_{1} (see exercises) that

$$
\begin{equation*}
\frac{\partial C_{1}}{\partial x}(t, x)=\Phi\left(d_{1}\right) \tag{4}
\end{equation*}
$$

where Φ is the standard normal distribution function and

$$
d_{1}=\left(\log (x / K)+\left(r+\frac{\sigma_{1}^{2}}{2}\right)(T-t)\right) / \sigma_{1} \sqrt{T-t}
$$

So $\frac{\partial C_{1}}{\partial x}$ is bounded. Further, we also see that $E_{\widetilde{P}}\left[(\widetilde{S}(t))^{2}\right] \leq(S(0))^{2} \exp \left(\sigma_{2}^{2} t\right)$. Hence

$$
E_{\widetilde{P}}\left[\int_{0}^{T}\left(e^{-r s} \frac{\partial C_{1}}{\partial x}(s, S(s)) \widetilde{\sigma}(s) S(s)\right)^{2} d s\right]<\infty
$$

Thus $M_{t}:=\int_{0}^{t} e^{-r s} \frac{\partial C_{1}}{\partial x}(s, S(s)) \widetilde{\sigma}(s) S(s) d \widetilde{B}_{s}$ is a \widetilde{P}-martingale. On the other hand, we see by differentiating the right hand side of (4) that

$$
\frac{\partial^{2} C_{1}}{\partial x^{2}}(t, x) \geq 0
$$

So taking expectation on both sides of (3) in connection with the Black-Scholes-PDE gives

$$
\begin{aligned}
& E_{\widetilde{P}}\left[e^{-r t} C(t, S(t))\right] \\
= & C_{1}(0, S(0))+E_{\widetilde{P}}\left[\int_{0}^{t}\left\{(-r) e^{-r s} C_{1}(s, S(s))+e^{-r s} \frac{\partial C_{1}}{\partial s}(s, S(s))\right\} d s\right. \\
& \left.+\int_{0}^{t} e^{-r s} \frac{\partial C_{1}}{\partial x}(s, S(s)) r S(s) d s+\frac{1}{2} \int_{0}^{t} e^{-r s} \frac{\partial^{2} C_{1}}{\partial x^{2}}(s, S(s))(\widetilde{\sigma}(s) S(s))^{2} d s\right] \\
\geq & C_{1}(0, S(0))+E_{\widetilde{P}}\left[\int_{0}^{t}\left\{(-r) e^{-r s} C_{1}(s, S(s))+e^{-r s} \frac{\partial C_{1}}{\partial s}(s, S(s))\right\} d s\right. \\
& \left.+\int_{0}^{t} e^{-r s} \frac{\partial C_{1}}{\partial x}(s, S(s)) r S(s) d s+\frac{1}{2} \int_{0}^{t} e^{-r s} \frac{\partial^{2} C_{1}}{\partial x^{2}}(s, S(s))\left(\sigma_{1} S(s)\right)^{2} d s\right] \\
= & C_{1}(0, S(0)) \\
= & p_{1} .
\end{aligned}
$$

We have that $E_{\widetilde{P}}\left[e^{-r T} C(T, S(T))\right]=p$. So $p \geq p_{1}$. Similarly, we get $p \leq p_{2}$.

