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• Some basic concepts in statistics: H1A1 flue

• Testing hypothesis and p-values: genomics

• Regression: observational studies

• Oppgave

• Discussion





I uke 32 fikk 3,3 % av dem som gikk til legen diagnosen ”influensaliknende sykdom”.

prediksjon



Øker …..

Men:

Den økte oppmerksomheten rundt epidemien

medfører at flere enn normalt oppsøker lege på grunn av 

influensaliknende symptomer og det økte antallet slike

konsultasjoner er derfor ikke en klar indikasjon på 

omfattende smitte innenlands.

(konfundering)



Kilde: FHIs vakttårnsystem (201 legekontorer over hele landet). 

Andel legekonsultasjoner (%) hvor diagnose 

”influensaliknende sykdom” (ILS) ble satt





Er forskjellen significant?

We need confidence intervalls!



Aldersforskjell?



Aldersforskjeller:

Foreløpig er de fleste pasientene barn og unge voksne (mange i 20-årene). 

Median alder for bekreftede tilfeller har vært 12-17 år. 

I USA er 60 % av pasientene mellom 5 og 24 år. 

Det kan skyldes 

a) at det er de unge som er eksponert, for eksempel ved reiser, 

b) at eldre har noe restimmunitet fra tidligere sesonger 

c) at det er noe med dette viruset som gjør det mer sykdomsfremkallende for 

unge

d) at unge oftere får tatt prøve og dermed blir bekreftede tilfeller som registreres

Assosiasjon vs.  Kausalitet



Mer mann enn kvinner?

Test for forskjell?





Konfidensintervall

Estimat



Reproduksjonsantallet: Antallet nye smittede som en smittet gir opphav til. 

Dersom en gjennomsnittspasient smitter fire andre personer, sier vi at 

reproduksjonsantallet er 4. Da vil epidemien vokse raskt

Reproduksjonstallet 

R0 < 1   - infeksion er ikke epidemisk

R0 > 1   - infeksion er epidemisk

værre hvis stor!

Andelen i populasjonen som trengs å vaksineres for å sikre immunitet i 

befolkning og hindre spredning er 1 - 1/R0



Values of R0 of well-known infectious diseases

Disease Transmission R0

Measles Airborne 12-18

Pertussis Airborne droplet 12-17

Diphtheria Saliva 6-7

Smallpox Social contact 5-7

Polio Fecal-oral route 5-7

Rubella Airborne droplet 5-7

Mumps Airborne droplet 4-7

HIV/AIDS Sexual contact 2-5

SARS Airborne droplet 2-5

Influenza
(1918 pandemic strain)

Airborne droplet 2-3

http://en.wikipedia.org/wiki/Measles
http://en.wikipedia.org/wiki/Pertussis
http://en.wikipedia.org/wiki/Diphtheria
http://en.wikipedia.org/wiki/Smallpox
http://en.wikipedia.org/wiki/Polio
http://en.wikipedia.org/wiki/Rubella
http://en.wikipedia.org/wiki/Mumps
http://en.wikipedia.org/wiki/HIV
http://en.wikipedia.org/wiki/AIDS
http://en.wikipedia.org/wiki/SARS
http://en.wikipedia.org/wiki/Influenza
http://en.wikipedia.org/wiki/Spanish_flu


Reproduksjonstallet R0 for H1N1:

Det anslås at en gjennomsnittspasient gir opphav til 1,4 – 3,5 nye 

pasienter, de fleste anslag rundt 1,5-1,7. 

(Sesonginfluensa har en R0 på 1,2-1,4.)

Anta R0 = 2, da trenger vi å vaksinere 1 - 1/R0 = 50% av befolkning.



Estimering av reproduksjonstallet R0 :

β -- Contact Rate (kontaktsansynlighet)

N -- Total Population (størrelse av populasjon)

1/γ -- Average Infectious Period (infektiviteteperiode i dager)

R0 = (βN)/γ 

fordi en smitsom individ har βN kontakter per dag og er smittsom for ca. 

1/γ dager.

Vi må estimere β og 1/γ fra data!





By analyzing the outbreak in Mexico, early data on international 

spread, and viral genetic diversity, we make an early assessment of 

transmissibility and severity. 

Our estimates suggest that 23,000 (range 6000 to 32,000) 

individuals had been infected in Mexico by late April, giving an 

estimated case fatality ratio (CFR) of 0.4% (range: 0.3 to 1.8%)

based on confirmed and suspected deaths reported to that time.

Three different epidemiological 

analyses gave basic 

reproduction number (R0) 

estimates in the range 

of 1.4 to 1.6.

Punktestimat og konfidensintervall



The proportion of hospitalised cases is significantly lower among patients 

who received Tamiflu prophylaxis compared with those who did not, 

RR=0.55 (0.34-0.89). 

Relativ risiko (RR) er et forholdstall som angir hvor mye større sannsynlighet 

det er for en hendelse i én gruppe i forhold til en annen.

F.eks. 

Gruppe A (med Tamiflu) vs. gruppe B (ikke Tamiflu). 

Hvis RR for hospitalisering er 0.55, betyr det at det er ca. halvparten så 

sannsynlig at en person som bruker Tamiflu skal til sykehus, som en person 

som ikke får Tamiflu.

Konfidensintervall for RR = (0.34-0.89).













Conclusions Neuraminidase inhibitors provide a small benefit by 

shortening the duration of illness in children with seasonal

influenza and reducing household transmission. They have little effect 

on asthma exacerbations or the use of antibiotics. Their

effects on the incidence of serious complications, and on the current 

A/H1N1 influenza strain remain to be determined.







Hypothesis 

testing in the era 

of genomic data



Outline

• Genomics and microarray data

• Finding differential expressed genes

• Two-sample comparisons (many!)

• Multiple testing: problems and solutions



What you will learn:

statistics:

- recap hypothesis testing

- classical t-test 

- p-value 

- type 1 and type 2 errors 

- learn that there are assumptions behind using Student t distribution 

- learn an alternative (permutation) which will make clear that: 

-- there is freedom in inventing useful new tests 

-- and we can compute p-values for them 

- learn about multiple testing issue, and simple remedies

genomic data:

- introduction to microarray data and modern high throughput genomics



February, 2001:

Aims:

1. Identify all genes in human DNA.

2. Store this information in databases.



    

Watson 

and Crick 

and the 

DNA 

molecule 

model



April 25, 1953: James Watson and Francis Crick's classic paper that first 

describes the double helical structure of DNA. They note that the structure 

“suggests a possible copying mechanism for the genetic material”. 



• 3.4 X 109  bp long

• ~ 35,000 genes

• Average size of a gene ~3000 bp

Human Genome



• Genes are inside cells

• Genes contribute to the production 

of proteins, which are building blocs 

(hormones, enzymes, etc)

• Proteins move between cells and 

produce effects

Genes at work!



Image: Access Excellence, National Institutes of Heath

• mRNA – single stranded RNA 
molecule

• Complementary to DNA

• Processed (spliced and 
polyadenylated) RNA transcript

• Carries the sequence of a gene out of 
the nucleus into the cytoplasm where 
it can be translated into a protein 
structure

“Central Dogma of Molecular Biology”



Microarray data and gene expressions

• Microarrays measure gene expression at the transcription level

• Gene expression is a measure of how much a gene transcribes

• Gene expressions tell how much a gene might contribute to 

biological dynamics

organism phenotype

transcription

translation

DNA

mRNA

protein cell phenotype



• Identify genes associated with a biological
state of interest

• Group genes with a similar pattern of
behaviour

• Derive a biological pathway, a netrwork of
genes jointly responsible for a biological
dynamics

What Can Be Done With Gene Expression Data?



https://www.23andme.com/







Breast Cancer: Genes Are Tied To Death Rates 

Researchers find genetic signature in breast tumors that seems to be 

powerful predictor of whether cancer will spread and kill or whether it can 

easily be cured by surgery; study also indicates that it may soon be 

possible to make distinction between women who need more aggressive 

therapy and those who do not; findings are reported in The New England 

Journal of Medicine.

December 19, 2002

http://www.nytimes.com/pages/health/index.html


Microarrays (DNA Chips)

• Enables monitoring of expression levels for

thousands of genes simultaneously.

• knowledge derived may be used for

drug development and gene therapy.

• There are many microarray technologies.



Simple explanation: 

• each spot corresponds to a specific gene

• each spot contains a gene specific “glue”: it attracts mRNA specifically from that gene

• by measuring how much mRNA has attached to a spot, we can measure how much

the gene was active



Control Treated

Colour greenColour red

Microarray technology

Measure how much green and 

red material has glued on each 

spot, and therefore how much

each gene was active

Laser technology

Microarray

Hybridization



The same

Control/Reference 

Microarray study



Independently treated samples

Many treated samples,

hybridised together with the same reference/control, 

in separate hybridisations, 

each producing a measure of the treated sample compared 

to the reference



Microarray Data

Genes

Individuals/samples

)(log2

gene

gene

gene
reference

treated
M 

Each element in this matrix

corresponds to a gene (row)

and a sample (column).

It measures how much that gene

was active in the sample 

(compared to the comon reference)



70 genes

295 patients.

LOW

HIGH

Expressions

LOW

HIGH

Looking for differentially expressed gene



Biological variation

Individuals/Samples in different conditions, have different gene 

expressions, because the activity of their genes varies. 

The measured expression levels vary from individual to 

individual used in the study.

Technical variation

Due to human error, there can be slight variation in microarray 

technology and hybridization during the experiment. Measurements

of colour is also prone to measurement error.



We are interested

in the biological

variation, given data that

contain both biological 

and technical variation. 





• 8 treatment and 8 control mice

• 16 hybridizations, each against a 

common reference

• Number of genes, m: ~ 6,000

Goal: To identify genes with altered expression in the livers of 

Apo AI knock-out mice (T) compared to inbred control mice (C).

Apo AI experiment 
(Matt Callow et al., Genome Research 2000)





Abstract (NB! simplified version!)

Based on the assumption that severe alterations in the expression of genes 

known to be involved in high-density lipoprotein (HDL) metabolism may affect 

the expression of other genes, we screened an array of >5000 mouse genes for 

altered gene expression in the livers of two lines of mice with dramatic 

decreases in HDL plasma concentrations. Labeled cDNA from apolipoprotein AI 

(apoAI)-knockout mice, scavenger receptor BI (SR-BI) transgenic mice, and 

control mice were cohybridized to microarrays. Two-sample t statistics were 

used to identify genes with altered expression levels in the knockout or 

transgenic mice compared with control mice. In the SR-BI group we found nine 

genes that were significantly altered on the basis of an adjusted P value < 0.05.

In the apoAI-knockout group, eight genes were altered compared with the 

control group (adjusted P < 0.05). Several of the genes identified in the SR-BI 

transgenic suggest altered sterol metabolism and oxidative processes. These 

studies illustrate the use of multiple-testing methods for the identification of 

genes with altered expression in replicated microarray experiments.



First we compare 

one gene at the time

(one row), to see if this

gene is differently expressed

in controls vs. cases.



gene

For every gene on the microarray we want to decide whether the 

expressions in the two experimental groups are (significantly) 

different from each other or not.

X1
X2 X8

X
Y1

y2 y8

Y

YES

X1
X2 X8

X
Y1

y2 y8

Y

NO



gene

X1
X2 X8

X
Y1 y2

y8

Y

?

Only if the distance between the averages of our measurements is 

large compared to the variation of out measurements, can we assume 

that the gene has different expression in the two experimental groups.

Two sample t-test!



http://trochim.human.cornell.edu/kb/stat_t.htm

Are the means 

different?

The significance of the difference in 

means depends on the variances.



21A210 :   H  vs.:H  

HYPOTHESIS TESTING

 A null hypothesis is assumed (H0). 

 Usually a neutral/conservative one

 We set up an alternative hypothesis (HA), often the complement of H0.

 In our case: the mean gene expressions in the two groups (indexed 1 and 2)  

are equal

 We reject the null hypothesis if the data have small probability when the null 

hypothesis is true, ”under H0”.

 We compute the p-value: the probability to obtain a result at least as extreme 

as the actually observed one, if the null hypothesis were true, ”under the null 

hypothesis”.

 The null hypothesis is rejected if the p-value is very small.

 The significance level is the threshold under which the p-values is 

considered as small. Often 0.05, or 0.01. If a null hypothesis is rejected, we 

say the result is significant. 



21A210 :   H  vs.:H  

 We reject the null hypothesis if the data have small probability when the null 

hypothesis is true, ”under H0”.

 The data are summarised in a test statistics, which summarises the 

information in the data relative to the hypothesis in question.

 For a given situation, there are many possible test statistics; some are 

better than others.

 Better means that they control the possible errors better



Hypothesis Truth vs. Decision

not rejected rejected

true Ho ok Type I error 

[false 

positive]

non-true Ho Type II error 

[false 

negative]

ok

Truth

Decision



Type I error: 

the error of rejecting the null hypothesis when it is actually true 

(false positive)

Significance level α is chosen so that

P(Type I error) = P(reject Ho | Ho is true) < α 

The p-value is the smallest significance level for which the 

null hypothesis Ho would be rejected, given the actual data.



Type II error: 

the error of failing to reject a null hypothesis when it is in 

fact false (false negative).

P(Type II error) = P(accept Ho | Ho is false) 

= P(accept Ho | HA is true) 

1 - P(Type II error) = β = power of the test

We wish the power of the test to be as high as possible,

while we keep the P(type I error) under control!



What is a good test?

A test that has high power 1-P(accept Ho | HA is true), 

while it keeps  the P(reject Ho | Ho is true) under control!

Example: Ho: μ1 = μ2

HA: μ1 ≠  μ2

This is not easy: to compute the power we need to use

the assumptions HA which usually are not fully specified

as they depend on more or unknow parameters.

Uniformly most powerful test (UMP)

A test with the greatest power for all values of the parameters 

being tested.



21A210 :   H  vs.:H  

 The t-test is UMV in many situations!

t-test

1Y 2Y

- sample means

- N1 and N2 are the sample sizes

- are sample variances. 



21A210 :   H  vs.:H  

Reject the null hypothesis that the two means are equal if 

where 

is the critical value of the t distribution with 

degrees of freedom.

t-test

or



21A210 :   H  vs.:H  

Under certain assumptions on the data (here expressions), T has under the 

null hypothesis a Student t-distibution with

degrees of freedom.

t-test



If equal variances are assumed, then the formula reduces to: 

where 

In this case the degrees of fredom are simply:



A little intuition about the formula of the t-test statistics

The formula for the t-test is a ratio. 

The top part of the ratio is just the difference between the two means. 

The bottom part is a measure of the dispersion of the data. 

This formula is an example of the signal-to-noise situation: 

the difference between the means is the signal that, in this case, we think our 

treatment may have produced into the data; 

the bottom part of the formula is a measure of variability that is essentially noise 

that may make it harder to see the difference. 



t-fordeling (3 f.g.) vs normalfordeling

Ligner mer og mer normalfordeling når antall frihetsgrader er stort



P(T>t)



Can I use the t-distribution? Assumptions.

Observations (individual expressions) should be

- independent 

- normal distributed (at least approximately)

The more samples, the less important is individual normality,

by the central limit theorem. 

If few samples, and we cannot assume normality then

- transform data (log scale etc.)

- Use other tests, that do not require normality; for example 

non-parametric tests (Wilcoxon)



              Control (Y1)    Treated (Y2)                 

        1        9.65                6.11 

        2        5.17                4.70 

        3        6.48                6.87 

        4        7.58                7.20 

        5        6.50                8.49 

        6        6.09                7.07 

        7        5.75                6.58 

        8        7.99                7.02 

        9        5.63                6.62 

       10       8.05         

       11       8.88         

       12       6.28         

Example: Expression of gene APO1 in 12 controls and 9 treated samples.
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740.6       004.7
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Statistical Analysis

For each experiment the expression

log ratios were displayed in a 5600 

times 16 matrix with rows 

corresponding to genes and columns 

corresponding to samples. To test the null

hypothesis Hj of equal mean expression for gene j in the control 

and knockout mice, a two-sample t statistic was used

(unequal variances)





Assessing the strength of the evidence against 

the null hypotheses of equal expression in the 

control and knockout mice is typically done by 

calculating p-values for each hypothesis; that is, 

by calculating for each gene the chance of 

getting a t statistic as extreme, or more extreme,

than the observed statistic under the null hypothesis. 

However, with a typical microarray data set comprising thousands

of genes, an immediate concern is multiple testing because

the probability that at least one null hypothesis is erroneously

rejected (type-I error) can increase sharply with the number of

hypotheses tested. To account for multiple testing we computed

adjusted p- values for each gene (Westfall & Young,

1993; Shaffer 1995).

What is Multiple Testing?



For our experiments, issues complicating P value calculations include an

unknown null distribution of the test statistics. A suitable

permutation distribution of the test statistics, as in Algorithm

4.1 of Westfall and Young (1993), was used to deal with these

problems. In this algorithm, the permutation distribution of

the t statistics was obtained by permuting the columns of the

data matrix. Note that we are not assuming that the t statistics

follow a t distribution or even a normal distribution, rather, we use a 

permutation distribution to estimate the null distribution

of the t statistics.

What is Permutation Testing?

p-value: the probability to obtain a result at least as extreme as the 

actually observed one, under the null hypothesis:

P( T ≥ tdata | Ho)  

To compute this, it is required that we are able to assume that T is t-

Student distributed



1  2                    n=16

1
2

m

genes

samples

t1

t2

.

.

.

tm

H1

H2

.

.

.

Hm

8 controls 8 cases



1. Under the null hypothesis there is no difference between 

the treated and the control mice: the expressions originate 

from a common distribution. 

2. Therefore, UNDER Ho, it was arbitrary to divide the 16 

mice in treated and controls: we could have split them 

differently in two groups of 8 each.

3. Actually every possible split is “correct” under the null 

hypothesis that all mice have identical expressions (except 

for measurement variation)

4. Under Ho, we can produce very many “equivalent” data 

sets, by permuting the samples: each such permuted data 

set is “correct” under the null hypothesis.

Computing p-values by permutations



5. We produce many permuted data sets (b=1,2,…, B). For 

each we compute the t-test statistics Tb.

6. Next we plot histogram of these Tb., which represents the 

distribution of the t-test statistics under the null hypothesis. 

7. We use this histogram to read of the p-value.

8. In this way we have not used the t-distribution to compute 

the p-value but the distribution obtained from the data by 

permutation.

9. We used less assymptions and got the p-value. Good!

10. Magic?

Computing p-values by permutations



After B permutations, 

b = 1,  , B , we compute

p-value = 1/B · #{b: |Tb| ≥ |Tobserved|}

How many permutations, b = 1,  , B ? 

[ I use the default (N1 + N2)
2 ]

Computing p-values by permutations



1  2                    n=16

1
2

m

genes

samples

t1

t2

.

.

.

tm

H1

H2

.

.

.

Hm

8 controls 8 cases

Multiple Testing

m=6000, often 35000, can be 1 million!

Many t-test!



Of the 6000 t-test statistics computed, roughly 300 will have t-test statistics 
with values ”more extreme” than the 0.05 significance, 

just by chance. These are false positives.

p-value = P( T ≥ tdata | Ho)



Many tests: what is the problem?

Simulation to illustrate it.

Example: assume we have 30 000 independent genes on a microarray 

and not a single gene is truly differentially expressed. 

If we reject the null hypothesis at level 0.05, we still expect 30000  · 0.05 = 1500 

to have by chance a p-value below 0.05.

We create a simulated data set, where nothing is differentially expressed, and 

then we compute the t statistics and the p-values. No gene should be found as 

differentially expressed.

Simulation of 6,000 genes with 8 treatments and 8 controls: All the gene 

expression values were simulated i.i.d from a N (0,1) distribution, i.e. 

NOTHING is differentially expressed in our simulation.

We show the 10 smallest p-values, obtained by permutation:



“gene” t p-value

index value

2271 4.93 210-4

5709 4.82 310-4

5622 -4.62 410-4

4521 4.34 710-4

3156 -4.31 710-4

5898 -4.29 710-4

2164 -3.98 1.410-3

5930 3.91 1.610-3

2427 -3.90 1.610-3

5694 -3.88 1.710-3

Simulation

Clearly we can’t just use standard p-value thresholds of 0.05 or 0.01.



Multiple testing: Counting errors

Testing m genes: H1, H2, , Hm .

How many wrong decisions do we do?

m0 = # of null hypotheses which are true (unknown)  

R = # of rejected null hypotheses (known)

We want to control the number of errors we do. 

There are two type of errors: Type I and Type II. 

We count them separately:



Hypothesis Truth vs. Decision

Number of null 

hypothesis not 

rejected

Number of null 

hypothesis rejected

totals

Number of true null 

hypothesis 
U V m0

Number of non-true 

hypothesis 
T S m1

totals m - R R m

Truth

Decision

V  =  # Type I errors [false positives]

T =  # Type II errors [false negatives]



# not rejected # rejected totals

# true H U V (F +) m0

# non-true H T S m1

totals m - R R m

Global control of Type I Error (False Positive)

We wish to control the total number of 

false positives, among the m tests. 

Two main ways of doing multiple testing

control:

Family-wise Error Rate

FWER = P(V ≥ 1 | null 

hypothesis) < α

The probability of one or more false positives 

is controlled.

False Discovery Rate  )hypothesis null|( FDR
R

V
E

The expected percentage of false positives, among the number of rejected genes

(discovered genes)



Bonferroni adjusted p-values

each p-value pj is multiplied by the number of tests

Bonferroni-adjusted p-value

mpp jj 
BON

If we reject hypothesis Hj when 

then overall FWER is smaller or equal to :


BON

jp

FWER = P(V ≥ 1 | null hypothesis) < α

Control of the FWER



FDR (FALSE DISCOVERY RATE) adjusted 

p-values can also be computed.

Formula not given, but something like

If we reject hypothesis Hj when 

then overall FDR is smaller or equal to :


FDR

jp

Control of the FDR

 )hypothesis null|( FDR
R

V
E

)an smaller thnumber  a(
FDR

mpp jj 



Assessing the strength of the evidence against the null hypotheses of equal 

expression in the control and knockout mice is typically done by calculating p-

values for each hypothesis; that is, by calculating for each gene the chance of 

getting a t statistic as extreme, or more extreme,than the observed statistic 

under the null hypothesis. 

However, with a typical microarray data set comprising thousands of genes, an 

immediate concern is multiple testing because the probability that at least one 

null hypothesis is erroneously rejected (type-I error) can increase sharply with 

the number of hypotheses tested. To account for multiple testing we computed

adjusted p- values for each gene (Westfall & Young,1993; Shaffer 1995).

The adjusted p-value corresponding to the test of a null hypothesis Hj for a 

single gene j can be defined as the level of the entire test procedure at which Hj 

would just be rejected, given the values of all test statistics involved. 

We read again from Callow...



Adjusted by Westfall & Young,1993 ???

•Westfall & Young (1993) adjusted p-values

prj* = maxk = 1…j { prob (maxl{rk…rm} |Tl| ≥ |trk| H0
COM )}

... complicated; but must be another way of doing the adjustement.

Indeed:

Wikipedia:

General methods of alpha adjustment for multiple comparisons:

Bonferroni correction

Boole–Bonferroni bound

Holm–Bonferroni method

Westfall-Young step-down approach of Westfall and Young

method of Benjamini and Hochberg

http://en.wikipedia.org/wiki/Bonferroni_correction
http://en.wikipedia.org/wiki/Bonferroni_bound
http://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
http://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
http://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
http://en.wikipedia.org/w/index.php?title=Westfall-Young_step-down_approach&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Westfall-Young_step-down_approach&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Westfall-Young_step-down_approach&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Westfall-Young_step-down_approach&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Westfall-Young_step-down_approach&action=edit&redlink=1
http://www.amazon.com/dp/0471557617/
http://www.math.tau.ac.il/~ybenja/
http://www.math.tau.ac.il/~dms/STAT-OR/hochberg.htm


Results: Genes that Change in apoAI-Knockout Mice 

Adjusted P values were computed to obtain a more precise assessment of the 

statistical significance of the results and to account for multiple comparisons. Table

1A lists those genes in the analysis with the largest (absolute value) t statistics and 

their adjusted P values. We identified five genes with an adjusted P value <0.05.

Three of these genes showed increased expression and two showed decreased 

expression. We also identified a further 11 elements that represent seven genes

that had adjusted P values 0.2.

We read again from Callow...





gene t unadj. p

index statistic (10-4)

2139 -22 1.5

4117 -13 1.5

5330 -12 1.5

1731 -11 1.5

538 -11 1.5

1489 -9.1 1.5

2526 -8.3 1.5

4916 -7.7 1.5

941 -4.7 1.5

2000 +3.1 1.5

5867 -4.2 3.1

4608 +4.8 6.2

948 -4.7 7.8

5577 -4.5 12

ALL

differentially 

expressed!

Many genes!

Many false positives?



gene
t unadj. p Bonferr

oni

index statistic (10-4) adjust.

2139 -22 1.5 .53

4117 -13 1.5 .53

5330 -12 1.5 .53

1731 -11 1.5 .53

538 -11 1.5 .53

1489 -9.1 1.5 .53

2526 -8.3 1.5 .53

4916 -7.7 1.5 .53

941 -4.7 1.5 .53

2000 +3.1 1.5 .53

5867 -4.2 3.1 .76

4608 +4.8 6.2 .93

948 -4.7 7.8 .96

5577 -4.5 12 .99

NO gene 

differentailly

expressed!



gene
t unadj. p Bonfer

roni

(“almost”)

FDR

index statistic (10-4) adjust. adjust.

2139 -22 1.5 .53 2  10-4

4117 -13 1.5 .53 5  10-4

5330 -12 1.5 .53 5  10-4

1731 -11 1.5 .53 5  10-4

538 -11 1.5 .53 5  10-4

1489 -9.1 1.5 .53 1  10-3

2526 -8.3 1.5 .53 3  10-3

4916 -7.7 1.5 .53 8  10-3

941 -4.7 1.5 .53 0.65

2000 +3.1 1.5 .53 1.00

5867 -4.2 3.1 .76 0.90

4608 +4.8 6.2 .93 0.61

948 -4.7 7.8 .96 0.66

5577 -4.5 12 .99 0.74

8

Diff. 

expr.

genes



Reading a paper with a serious mistake!



Abstract:



As 13,023 genes were evaluated for mutations, it was necessary to correct 

these probabilities for multiple comparisons. For this purpose, we used the 

FDR algorithm described by Benjamini and Hochberg (S16). The genes 

were ranked in ascending order, assigning a 1 to the gene with the lowest 

probability of having the observed number of mutations in it, a 2 to the 

gene with the next lowest probability, etc. 

Statistical methods:

But:

p-value = P(observe the number of mutations, or more | Ho)





What have you learned?

statistics:

- recap hypothesis testing

- classical t-test 

- p-value 

- type 1 and type 2 errors 

- learn that there are assumptions behind using Student t distribution 

- learn an alternative (permutation) which will make clear that: 

-- there is freedom in inventing useful new tests 

-- and we can compute p-values for them 

- learn about multiple testing issue, and simple remedies

genomic data:

- introduction to microarray data and modern high throughput genomics



















Variables Entered/Removedb

heighta . Enter

Model

1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: pefmeanb. 

Model Summary

,693a ,480 ,475 84,02849

Model

1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), heighta. 

ANOVAb

671200,6 1 671200,571 95,060 ,000a

727261,0 103 7060,787

1398462 104

Regression

Residual

Total

Model

1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), heighta. 

Dependent Variable: pefmeanb. 

Coefficientsa

-1174,895 173,411 -6,775 ,000 -1518,815 -830,975

9,612 ,986 ,693 9,750 ,000 7,657 11,568

(Constant)

height

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: pefmeana. 

SPSS utskrift:







Variables Entered/Removedb

gender,

height
a . Enter

Model

1

Variables

Entered

Variables

Removed Method

All requested variables entered.a. 

Dependent Variable: pefmeanb. 

Model Summary

,796a ,634 ,627 70,80671

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), gender, heighta. 

ANOVAb

887075,4 2 443537,714 88,467 ,000a

511386,2 102 5013,590

1398462 104

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), gender, heighta. 

Dependent Variable: pefmeanb. 

Coefficientsa

-337,280 194,028 -1,738 ,085 -722,133 47,574

3,707 1,225 ,267 3,027 ,003 1,278 6,136

133,700 20,375 ,579 6,562 ,000 93,286 174,115

(Constant)

height

gender

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: pefmeana. 



Hvordan lese SPSS utskriften:

ˆ 337.28a  

1
ˆ 3.71b 

r2 = 0.63

Forklart variasjon

p-verdier 95% KI

Model Summary

,796a ,634 ,627 70,80671

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), gender, heighta. 

Coefficientsa

-337,280 194,028 -1,738 ,085 -722,133 47,574

3,707 1,225 ,267 3,027 ,003 1,278 6,136

133,700 20,375 ,579 6,562 ,000 93,286 174,115

(Constant)

height

gender

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: pefmeana. 

2

ˆ 133.70b 











• Cholesterol-lowering 
medication vs placebo. 
1873 patients

• No effect on cardiac 
events related to aortic-
valve stenosis!

• But increased risk of 
cancer among those on 
active medication (105 
vs. 70, P = 0.01).

Hence, the statistical result is in opposition to the mechanistic understanding. 

Both the lack of positive effects, and the increased rate of cancer was 

unexpected.



Lessons from this example

• Even a good scientific understanding of disease 
mechanisms is not sufficient to predict treatment effects 
with any certainty
– Mechanistic understanding of the heart is good. Still the result 

was not as expected

– An enormous effort has gone into understanding how cancer 
arises. Still surprising result of the trial

• Editorial in New England J. Med.: Increased cancer: true 
signal or  play of chance?
– “Ezetimibe interferes with the gastrointestinal absorption not only 

of cholesterol, but also of other molecular entities that could 
conceivably affect the growth of cancer cells.”

• Why trust the statistics in this case? This was a 
randomized double blind trial



Design aspects

• A detailed description is given of the 
design, with an excellent overview in 
Figure 1.

• Discuss:

– Exclusions

– Drop-out

– “Discontinued placebo, followed per protocol”. 
What does this mean?





P-values

• What do the P-values mean in this paper? 

What is their function?

• The P=0.02 for cancer incidence: Should 

this be interpreted differently than the 

other P-values Why?









Effect measures

• There are at least two levels of effect: 

cholesterol modification and events

(primary and secondary outcomes and 

death)

• Discuss the relationship between these 

two levels. What type of effect measures 

do you find at the two levels?



Tables and figures

• Discuss the set up of figures from a 

statistical point of view. What information 

is conveyed in the figures?



You need to know that the hazard ratio is to be interpreted as a relative risk.

HR=RR=0.96; the risk is reduced of 4%, but not significant. 









Hypothesis testing 

vs. 

Hypothesis generating



Statistics does not prove a hypothesis, 

does not find the gene of breast cancer:

it helps to learn from data, complex data.

Validation and 

mechanistic, substantive understanding are needed




