A. $\operatorname{Str} \varnothing \mathrm{m}$

Compulsory problem set 2 - solutions ECON3120/4120 Mathematics 2, autumn 2003

Problem 1

(a) The determinant of the coefficient matrix is

$$
\begin{array}{r}
\left|\begin{array}{rrr}
3 & -2 & 4 \\
1 & 2 & -4 \\
-1 & 1 & p
\end{array}\right|=3\left|\begin{array}{rr}
2 & -4 \\
1 & p
\end{array}\right|-(-2)\left|\begin{array}{rr}
1 & -4 \\
-1 & p
\end{array}\right|+4\left|\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right| \\
=3(2 p+4)+2(p-4)+4 \cdot 3=8 p+16
\end{array}
$$

By Cramer's rule the equation system has a unique solution if and only if the determinant is different from 0 , that is if and only if $p \neq-2$.

To see what happens if $p=-2$, we can use elementary operations on the system:

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
3 & -2 & 4 & 5 \\
1 & 2 & -4 & a \\
-1 & 1 & -2 & 1
\end{array}\right) \stackrel{\leftarrow}{\leftrightarrows} \underset{ }{\leftrightarrows} 1 \sim\left(\begin{array}{rrrc}
0 & -8 & 16 & 5-3 a \\
1 & 2 & -4 & a \\
0 & 3 & -6 & a+1
\end{array}\right) \cdot\left(-\frac{1}{8}\right) \\
& \sim\left(\begin{array}{cccc}
0 & 1 & -2 & \frac{1}{8}(3 a-5) \\
1 & 2 & -4 & a \\
0 & 3 & -6 & a+1
\end{array}\right) \stackrel{-2-3}{\longleftarrow} \downarrow \sim\left(\begin{array}{cccc}
0 & 1 & -2 & \frac{1}{8}(3 a-5) \\
1 & 0 & 0 & \frac{1}{4}(a+5) \\
0 & 0 & 0 & \frac{1}{8}(23-a)
\end{array}\right)
\end{aligned}
$$

The last row in the last matrix represents the equation $0=\frac{1}{8}(23-a)$. Thus, the system has no solution if $a \neq 23$. On the other hand, if $a=23$ then it obviously has infinitely many solutions.

Hence, the original system has no solution if $p=-2$ and $a \neq 23$ and infinitely many solutions if $p=-2$ and $a=23$.
(b) Most of the work has already been done in part (a). With $a=23$ and $p=-2$ we get the equation system

$$
\left.\begin{array}{rr}
x_{2}-2 x_{3} & =8 \\
x_{1} & =7 \\
0 & =0
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
x_{1}=7 \\
x_{2}=2 x_{3}+8
\end{array}\right.
$$

The solution of this system can be written as $x_{1}=7, x_{2}=2 t+8, x_{3}=t$, with t an arbitrary number. Thus, we have solutions with one degree of freedom.

Problem 2

(a) $\left|\mathbf{A}_{a}\right|=\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & a-1 & 1 \\ 1 & 2 & a+1\end{array}\right|^{-1}=\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & a-1 & 1 \\ 0 & 0 & a-2\end{array}\right|=(a-1)(a-2)$.
\mathbf{A}_{a} has an inverse $\Longleftrightarrow a \neq 1$ and $a \neq 2$.
With $a=3$ we get $\mathbf{A}_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 1 \\ 1 & 2 & 4\end{array}\right)$ with $\left|\mathbf{A}_{3}\right|=2 \cdot 1=2$.
The cofactors of the elements in \mathbf{A}_{3} are

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{ll}
2 & 1 \\
2 & 4
\end{array}\right|=6, \quad C_{12}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 4
\end{array}\right|=1, \quad C_{13}=\left|\begin{array}{ll}
0 & 2 \\
1 & 2
\end{array}\right|=-2 \\
& C_{21}=-\left|\begin{array}{ll}
2 & 3 \\
2 & 4
\end{array}\right|=-2, \quad C_{22}=\left|\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right|=1, \quad C_{23}=-\left|\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right|=0 \\
& C_{31}=\left|\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right|=-4, \quad C_{32}=-\left|\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right|=-1, \quad C_{33}=\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right|=2
\end{aligned}
$$

Hence,

$$
\mathbf{A}_{3}^{-1}=\frac{1}{\left|\mathbf{A}_{3}\right|}\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{rrr}
6 & -2 & -4 \\
1 & 1 & -1 \\
-2 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & -1 & -2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 & 0 & 1
\end{array}\right)
$$

(It is a good idea to check that $\mathbf{A}_{3} \mathbf{A}_{3}^{-1}=\mathbf{I}$!)
(b) Since $|\mathbf{B}|=-4 \neq 0$, the matrix \mathbf{B} has an inverse, \mathbf{B}^{-1}. Multiplication of $\mathbf{B X}=\mathbf{B}^{2}+2 \mathbf{B}$ from the left with \mathbf{B}^{-1} gives
$\mathbf{X}=\mathbf{B}^{-1}\left(\mathbf{B}^{2}+2 \mathbf{B}\right)=\mathbf{B}+2 \mathbf{I}=\left(\begin{array}{rrr}2 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 2 & 0\end{array}\right)+\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)=\left(\begin{array}{rrr}4 & 0 & -1 \\ 0 & 3 & 1 \\ 0 & 2 & 2\end{array}\right)$.
Comment: Remember that you were asked to find all solutions. It is immediately clear from the equation $\mathbf{B X}=\mathbf{B}^{2}+2 \mathbf{B}=\mathbf{B}(\mathbf{B}+2 \mathbf{I})$ that $\mathbf{X}=\mathbf{B}+2 \mathbf{I}$ is a solution. The problem is to show that this is the only solution, and that is where we need the inverse of \mathbf{B}.

Problem 3

(a) With $f(x, y)=\frac{y-x}{x^{2}+y^{2}+1}$, we get

$$
\begin{aligned}
& f_{1}^{\prime}(x, y)=\frac{(-1)\left(x^{2}+y^{2}+1\right)-(y-x) 2 x}{\left(x^{2}+y^{2}+1\right)^{2}}=\frac{x^{2}-y^{2}-2 x y-1}{\left(x^{2}+y^{2}+1\right)^{2}} \\
& f_{2}^{\prime}(x, y)=\frac{\left(x^{2}+y^{2}+1\right)-(y-x) 2 y}{\left(x^{2}+y^{2}+1\right)^{2}}=\frac{x^{2}-y^{2}+2 x y+1}{\left(x^{2}+y^{2}+1\right)^{2}}
\end{aligned}
$$

(b) The stationary points of f are the solutions of the equations

$$
\begin{align*}
& x^{2}-y^{2}-2 x y-1=0 \Longleftrightarrow x^{2}-y^{2}=2 x y+1 \tag{1}\\
& x^{2}-y^{2}+2 x y+1=0 \Longleftrightarrow x^{2}-y^{2}=-2 x y-1 \tag{2}
\end{align*}
$$

It follows that $2 x y+1=-2 x y-1$, that is, $2 x y=-1$. Inserting this in (1) or (2), we get $x^{2}=y^{2}$, so $y= \pm x$. Since $2 x y$ is negative, x and y must have opposite signs, and therefore $y=-x$. Hence, $2 x^{2}=-2 x y=1$, and $x= \pm \frac{1}{2} \sqrt{2}$. Thus, the stationary points are

$$
\left(\frac{1}{2} \sqrt{2},-\frac{1}{2} \sqrt{2}\right) \quad \text { and } \quad\left(-\frac{1}{2} \sqrt{2}, \frac{1}{2} \sqrt{2}\right)
$$

(c) The equation of the level curve, $\frac{y-x}{x^{2}+y^{2}+1}=c$, can be rewritten as

$$
x^{2}+y^{2}+1=\frac{1}{c}(y-x) \Longleftrightarrow x^{2}+\frac{1}{c} x+y^{2}-\frac{1}{c} y+1=0 .
$$

Completing the squares, we get

$$
\left(x+\frac{1}{2 c}\right)^{2}-\frac{1}{4 c^{2}}+\left(y-\frac{1}{2 c}\right)^{2}-\frac{1}{4 c^{2}}+1=0
$$

that is,

$$
\left(x+\frac{1}{2 c}\right)^{2}+\left(y-\frac{1}{2 c}\right)^{2}=\frac{1}{2 c^{2}}-1=\frac{\frac{1}{2}-c^{2}}{c^{2}}
$$

Hence, if $0<|c|<\sqrt{\frac{1}{2}}=\frac{1}{2} \sqrt{2}$, the level curve $f(x, y)=c$ will be a circle centered at $\left(-\frac{1}{2 c}, \frac{1}{2 c}\right)$ and with radius $\sqrt{\frac{1}{2 c^{2}}-1}$.

Notes on grading: I have indicated an approximate (and unofficial!) grade on each of the papers that I have corrected. This time I gave points on a scale from 0 to 50, and assigned grades as follows:

$$
46-50: \mathrm{A}, 39-45: \mathrm{B}, 33-38: \mathrm{C}, 26-32: \mathrm{D}, 20-25: \mathrm{E} .
$$

On each paper I have noted both the letter grade and the point score. There were 42 papers in all, and the distribution of grades turned out as follows:

$$
\mathrm{A}: 5, \mathrm{~B}: 11, \mathrm{C}: 15, \mathrm{D}: 8, \mathrm{E}: 3
$$

The highest score attained was 49 and the lowest was 20 . If you got less than 35 points, then you should take that as a serious warning signal.

Remember that the grades given for this paper will not count towards your final grade for this course.

Concerning the exam: Remember that the material on differential equations in the handouts of chapter 5 from FMEA (or chapter 1 in MA II) will not be required on the exam in ECON3120/4120 this year.

The exam is an "open book exam", that is, you are allowed to use any printed or hand-written material, books, lecture notes, etc. Pocket calculators are also permitted.

Good luck!
Arne Strøm

